

KANNUR UNIVERSITY

M.Sc. BIOSTATISTICS

SCHEME & SYLLABUS

(Under Choice Based Credit & Semester System)

2023 Admission Onwards WNUR U

IVEP

DEPARTMENT OF STATISTICAL SCIENCES

Mangattuparamba Campus

Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

KANNUR UNIVERSITY

Post Graduate Programme in Biostatistics

M.Sc. Biostatistics programme is a two-year programme divided into four semesters. A student is required to complete at least 80 credits for the completion of the programme and the award of degree.

DURATION: 2 Years (4 semesters)

INTAKE: 15.

OBJECTIVES OF THE PROGRAMME

- 1. Gain sound knowledge in theoretical and practical aspects of Biostatistics.
- 2. Acquire the working knowledge of various statistical software and programming languages.
- 3. Acquire skills and competencies in Biostatistical computing methods and develop algorithms and computer programmes for analyzing complex datasets.
- 4. Communicate effectively complex statistical ideas to people working in diverse spheres of academics and organizational setups.
- 5. Handle and analyze large databases related to various biomedical research and make meaningful interpretations of the results.
- 6. Get wide range of job opportunities in industry as well as in government sector.
- 7. Make unique contribution for the development of discipline by addressing complex and challenging problems in emerging areas of the discipline.
- 8. Imbibe effective scientific and/or technical communication in both oral and writing.
- 9. Continue to acquire relevant knowledge and skills appropriate to professional activities and demonstrate highest standards of ethical issues in Biostatistical sciences.

ELIGIBILITIES:

The selection procedure will be based on an entrance examination by the University. The eligibility criteria for appearing entrance examination is any of the following degree with overall 50% marks:

- 1. B.Sc. Statistics/Biostatistics as core course.
- 2. B.A./B.Sc. Mathematics
- 3. B.Sc. Computer Science with Statistics/Mathematics as complementary course
- 4. B. Tech/B.E degree.
- 5. B.Sc. with Mathematics and Statistics as core courses.

ADMISSION:

- The selection of the candidate is mainly based on the marks secured in the Degree Course/Admission test.
- The admission test will cover statistics and mathematics at the undergraduate level.

Relaxation & Weightage

Relaxation and weightage will be as per Kannur University rule.

COURSE DETAILS:

A student must register for the required number of courses at the beginning of each semester.

No students shall register for more than 28 credits and less than 16 credits per semester.

A total of 80 credits shall be the minimum for successful completion of the course in which minimum of 50% of credits have to be earned from Discipline Specific Courses including dissertation for any programme. Those who secure only minimum credit for core/ elective subjects has to supplement the deficiency for obtaining the minimum total credits required for successful completion of the program from the other divisions.

EVALUATION:

The faculty member who teaches the course shall do evaluation of the students for each course on the basis of Continuous Evaluation and End Semester Examination shall be evaluated by External Examiners. The proportion of the distribution of marks among the continuous evaluation and end semester examination shall be **40:60**.

Continuous Evaluation includes assignments, seminars, written examination and viva voce for each course. Weightage to the components of continuous evaluation shall be given for all theory papers of the course as follows:

Components of CE	Minimum Number	Weightage	Grade Points	Practical Weightage	Grade Points
Test paper	2	40	16	80	-
Assignments	O'I V	20	08		
Seminar presentation, Viva Voce, Discussion, Debate etc.		40	16		
Record		-	-	20	-

Test Paper: For each course there shall be at least two class tests during a semester.

Assignments: Each student shall be required to do one assignment for each course.

Seminar: Students are required to present a seminar on a selected topic in each paper. The evaluation of the seminar shall be done by the concerned teacher handling the course.

Viva Voce – End semester theory Viva Voce examination will be conducted for each paper before the commencement of public examination.

Attendance: Minimum attendance required for each paper shall be 75% of the total number of classes conducted for that semester. Those who secured the minimum requirement of attendance only be allowed to register/appear for End Semester Examination.

Condonation of attendance to a maximum of 10 days in a semester subject to a maximum of two times during the whole period of the PG program may be granted by the university as per university rules.

Conduct of Examination:

The Vice Chancellor will approve the panel of examiners submitted by the Head of the Department. All the teachers of the Department will be the members of the Board of examiners with Head of the Department as the Chairperson, there shall be an external examiner.

Research Project:

The students have to complete a research project during IV Semester in collaboration with any of the authorized research institutions located within or outside the state or within their own Department.

KANNUR UNIVERSITY

DEPARTMENT OF STATISTICAL SCIENCES

VISION

Motivated by optimism and responsibility, the vision is to develop an exemplary centre for studies, practice and research in Statistics which will be beneficial to the stakeholders and

the society.

MISSION

To develop an excellent centre of quality teaching and research in Statistics To develop an international centre for advanced statistical computing and data analysis.

PROGRAMME OUTCOMES

- PO 1 : Critical Thinking: Take informed actions after identifying the assumptions that frame our thinking and actions, checking out the degree to which these assumptions are accurate and valid, and looking at our ideas and decisions (intellectual, organizational, and personal) from different perspectives.
- **PO2 : Problem Solving:** Identify, formulate, conduct investigations, and find solutions to problems based on in-depth knowledge of relevant domains.
- **PO 3** : Communication: Speak, read, write and listen clearly in person and through electronic media in English/language of the discipline, and make meaning of the world by connecting people, ideas, books, media and technology.
- **PO 4 : Responsible Citizenship:** Demonstrate empathetic social concern, and the ability to act with an informed awareness of issues.
- **PO 5 : Ethics**: Recognize different value systems including your own, understand the moral dimensions of your decisions, and accept responsibility for them.
- **PO 6 : Self-directed and Life-long Learning:** Acquire the ability to engage in independent and life-long learning in the broadest context sociotechnological changes.

PROGRAMME SPECIFIC OUTCOME

- **PSO 1:** Expertise in the field of biostatistical theory and its practical applications.
- **PSO 2:** Expertise to take up responsibilities as efficient Biostatisticians/Statistical Officers/Research Officers/ Statistical Analytics.
- **PSO 3:** Expertise on techniques of biostatistics and in the field of data analysis.
- **PSO 4:** Make Awareness on recent trends in biostatistical theory and applications.
- **PSO 5:** Utilize statistical methods and tools to analyze data sets, draw meaningful conclusions, and make informed decisions based on biostatistical inferences.
- **PSO6:** Demonstrate proficiency in using statistical software such as R and SPSS, to perform statistical computations, visualize data, and facilitate biostatistical analysis.

COURSE OUTCOME

- CO1 : Demonstrate an in-depth understanding of Biostatistical concepts, including advanced clinical trials, statistical epidemiology, demography, sampling and design, statistical inference, regression analysis, probability and distribution theory.
- **CO 2** : Apply biostatistical techniques to analyze real life data using statistical packages such as SPSS, SAS and free software R and Python.
- **CO3**: Formulate suitable models for pharmaceutical research and drug development.
- **CO 4** : Apply statistical techniques to analyze medical data which enables the students to develop critical thinking skills and draw meaningful conclusions from complex datasets.
- **CO 5** : Develop research skills, including literature review, problem formulation, data collection, experimental design, and statistical analysis, to conduct independent biomedical research.

	1	2	3	4	5	6	7	8	Total Credit s
	Disciplir	ne Specific	Electives						
Semester	Core Courses (DSC)	Electives (DSE)	Interdisciplinary/ Multidisciplinary Elective	AEC 2 Credits	SEC(SE C) 2Credits	VAC /MOO C 2Credits	Internship /Field Visit /Minor Project /Institutional/In dustrial Visit 2Credits	Dissertation / Major Project	
1	MSBST01DSC01 MSBST01DSC02 MSBST01DSC03 MSBST01DSC04	Pool A MSBST01DSE01 to 02 (any 1)	1.000	57					10
	4 Credits x 4 = 16 Credits	3 Credits	\</td <td>2</td> <td></td> <td></td> <td></td> <td></td> <td>19</td>	2					19
2	MSBST02DSC05 MSBST02DSC06 MSBST02DSC07 MSBST02DSC08	Pool B MSBST02DSE03 to 04 (any 1)		Pool C	Pool D				23
	4 Credits x 4 = 16 Credits	3 Credits		2 Credits	2 Credits				
		Pool E MSBST03DSE05 to 06	Pool G				MSBST03DSC		
3	MSBST03DSC09 MSBST03DSC10	(any 1) Pool F MSBST03DSE07 to 12 (any 2)	To be obtained from other Departments			VAC/ MOOC	11		23
	4 Credits x 2 = 8 Credits	3Credits x 3= 9 credits	4 Credits			2* Credits	2 Credits		
4		Pool H MSBST04DSE13 to 14 (any 1) Pool I MSBST04DSE15 to 21 (any 1)						MSBST04DS C12	18
		3Credit x 2= 6 Credits						12 Credits	
	Total Credit for M. S	Sc. Biostatistics Program	n						83

*Credits are over and above the total credit requirement.

4

		FIRST SE	MEST	ER					
SI No	Course Code	Title of Paper		Contact urs/We		Mai	:ks		
		-	L	T/S	P	ESE	CE	Total	Credits
	Ē	DISCIPLINE SPECIFIC COR	E COU	JRSES	(DCI	E)			
1.1	MSBST01DSC01	Mathematical Methods for Biostatistics	4	a.	V	60	40	100	4
1.2	MSBST01DSC02	Probability and Distribution Theory	4	2	1	60	40	100	4
1.3	MSBST01DSC03	Sampling Methods	4	1		60	40	100	4
1.4	MSBST01DSC04	Introduction to Biostatistics	4	2		60	40	100	4
	DI	SCIPLINE SPECIFIC ELECT	FIVE C	OURS	SE (DS	SE)	•		•
1.5	MSBST01DSExx	Elective-I-DSE (Pool A)	1	2	6	60	40	100	3
	Total credits						19		

L=Lecture, T/S=Tutorials/Seminar, P/I=Practical/Internship, CE =Continuous Evaluation, ESE = End Semester Evaluation

SI No	POOL A:- List of Courses for Elective -I DISCIPLINE SPECIFIC ELECTIVES (DSE)								
1.5a	MSBST01DSE01	Biostatistical Computing Using R - I (Practical)		2	6	60	40	100	3
1.5b	MSBST01DSE02	Biostatistical Computing Using SPSS - I (Practical)		2	6	60	40	100	3

THUR UNIVERS

FIRST SEMESTER M.Sc. BIOSTATISTICS PROGRAMME

Course Code & Title	MSBST01DSC01-MATHEMATICAL METHODS FOR BIOSTATISTICS			
Programme	M.Sc. Biostatistics	Semester I		
Course Objectives	 Learn Taylor's Theorem Describe optima of fund To achieve ideas on vectors basis and dimension. Establish the relation be To achieve ideas on quasi 	oper integrals, beta and gamma functions. n with applications.		

Modules	Content	Module Outcome
Module I: Sequence and series (15 Hours)	Sequences, series and their convergence, limit superior, limit inferior, limit of sequences, Cauchy sequence. Comparison test, D'Alembert's ratio test, Cauchy's root test, Raabi's test, Gauss test, Cauchy's integral test, Absolute convergence of series, Leibnitz's test for the convergence of alternating series, conditional convergence, indeterminate form, L'Hospital 's rule (problems only).	 The students will be able to: Explain convergences of sequences and series. Solve problems using various tests to examine the convergences of series. Explain the concept of L Hospital's Rule

Module II: Special functions (15 Hours)	The beta and gamma functions, duplication formula for gamma function, incomplete beta and gamma functions, functions of several variables, Limits and continuity, Taylor's theorem and its applications, Conditions for the optima of multivariate functions, Lagrange's method for constrained optimum, examples (bivariate case only)	 Explain proper and improper beta and gamma functions. Understand the calculus of multivariable functions To find local and global optima of functions.
Module III: Vectors and Matrices (15 Hours)	Vector space, Subspaces, Linear dependence and independence, Basis and dimensions, Matrices and determinants, symmetric, orthogonal and idempotent matrices, Row and column space of matrix, Rank, inverse, Characteristic polynomial, Cayley- Hamilton Theorem (statement and problem).	 To be familiar with vector space, subspace and examples. Explain linear dependence and independence. State Cayley-Hamilton theorem and solve problems.
Module IV: Eigen values and spectral decomposition (15 Hours)	Eigen values and eigen vectors, Spectral decomposition, Algebraic and geometric multiplicities, Generalized inverse, Quadratic forms, Classification of quadratic forms, Properties and reductions.	 Determine the Eigen values and Eigen vectors of the given matrix Write down the spectral decomposition of the given matrix Explain different types of quadratic forms.
Reference	 <i>Text Books</i> 1. Malik, S.C & Arora, S. (2006). <i>Math</i> New-age international publishers. 2. Mathai, A. M. & Haubold, H. J. (2017). <i>Physicists and Engineers</i>, De Gruyter, 6 	Linear Algebra – A course for

	Reference Books
	1. Rudin, W. (2013). Principles of Real Analysis (3rdEd.) McGraw Hill.
	2. Ramachandra Rao & Bhimasankaran (1992). Linear Algebra. Tata
	McGraw Hill, New Delhi.
	3. Apsostol, T. M. (1974). Mathematical Analysis, Second Edition. Narosa,
	New Delhi.
	4. Rao, C. R. (2002). Linear Statistical Inference and Its Applications,
	Second Edition, John Wiley and Sons, New York.
	After successful completion of this course, student will be able to:
	1. Understand the concepts of limit and continuity of functions and their
Course	properties
Course	2. Understand convergence of sequences and series of real numbers and
Outcomes	functions.
	3. Understand the vector space, matrices and its properties
	4. Understand the properties of quadratic forms and its reduction.

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

- 11

Components	Weightage	
End Semester Evaluation	60	
Continuous Eva	luation	
Tests	16	
Assignment	08	
Seminar	16	
Total	40	

Sample Questions to Test Outcomes:

1. Define limit of sequence of real numbers. Give an example of a sequence for which limit does not exist.

- 2. What is meant by absolute convergence of series?
- 3. What is incomplete gamma function?.
- 4. State conditions for the optima of a multivariate function.
- 5. State Cayley-Hamilton theorem.
- 6. Explain Gram-Schmidth orthogonalization process.
- 7. Write a short note on different types of quadratic forms.

Course Code & Title	MSBST01DSC02- PROBABILITY AND DISTRIBUTION TH			
Programme	M.Sc. Biostatistics	Semester	Ι	
	The Course aims			
	• To introduce the basic concepts	of probability		
Course	• To understand the connection be	etween three approac	thes of	
Objectives	definitions of probability.To get an idea on important theorems in probability using			
6				
	axiomatic definition of probabili	ty		
	• To learn about various discrete and continuous probability			
1	distributions needed for biostatistical analysis.			

DISCIPLINE SPECIFIC CORE COURSE

Modules	Content	Module Outcome
Module I: Probability and Random Variables (15 Hours)	Computation of probability based on classical and empirical definitions. Axiomatic approach to probability, probability space, conditional probability space, independence of events, Bayes' theorem and examples, random variable, distribution function, density function, expectation, variance and moments of a random variable and properties.	 Understand various definitions of probability Conditional probability and Bayes' theorem Concept of random variable and their distributions
Module II: Important large sample theorems (15 Hours)	Definition of moment generating function and its limitations, characteristic function, elementary properties, characteristic functions and moments. Sequence of random variables, various modes of convergence of sequence random variables (definition only), Weak law of large numbers, strong law of large numbers, central limit theorem, DeMoivre-Laplace and Lindbergh- Levy forms of CLT. Applications of CLT in biostatistics.	 Definition of characteristic function Concept of weak and strong laws of large numbers Concept of central limit theorem and its applications in biostatistics
Module III: Special Discrete Distributions (15 Hours)	Discrete Uniform, Bernoulli, Binomial, Poisson, Geometric, Negative binomial, Hyper geometric, Multinomial. Properties of these distributions. Sample simulation and fitting of discrete distributions.	 Explain different discrete distributions. Properties of discrete distributions Simulation of samples from standard discrete distributions

Module IV: Special Continuous Distributions (15 Hours)	Continuous Uniform, Exponential, Beta, Gamma, Normal, Weibull, Pareto, Laplace, Logistic, Cauchy and log-normal distributions. Properties of these distributions. Sample simulation and fitting of continuous distributions	 Explain different continuous distributions Properties of continuous distributions Simulation of samples from standard continuous distributions
References	 Text Books Krishnamurthy, K.(2006). Handbook of Applications .Chapman & Hall/CRC, Ne Schinazi, R.B. (2010). Probability with Second Ed . Springer, New York. Reference Books Bhat, B.R. (2004). Modern Probability To New Delhi. Rohatgi, V. K. (2020). An Introduction to Mathematical Statistics, Wiley Eastern. Johnson, N.L., Kotz, S. and Balakrishnan Univariate Distributions, Vol. I & Vol. I. York. Johnson, N.L., Kotz. S. and Kemp. A.W Distributions, John Wiley and Sons, New 	ew-York Statistical Applications- Theory, New Age Publishers, To Probability Theory and N. (1995). Continuous I, John Wiley and Sons, New-
Course Outcomes	 After successful completion of this course, state 1. Understand the concepts of probability and 2. Understand characteristic function and its 3. Understand various laws of large numbers 4. Understand the concepts of discrete and concepts 5. Understand the normal distribution and variable their properties and applications for scient 	d properties. properties and central limit theorems. ontinuous distributions. rious non-normal distributions,

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation	60
Continuous Eval	uation 16
Assignment	08
Seminar	16
Total	40

Sample Questions to test Outcomes:

1. Define Poisson random variable. Find the moment generating function of a Poisson random variable.

2. Show that in the case of binomial distribution mean is always greater than variance,

however, mean equal to variance in the case of Poisson distribution.

3. Define t-statistic and explain its important applications. Write down the probability density function of Student's t-distribution.

4. Obtain the characteristic generating function of a standard normal distribution.

5. Define bivariate normal distribution. Show that linear combination of independent normal variables is normally distributed.

6. Define chi-square distribution. Obtain the MGF of the Chi-square distribution. Use it to obtain the mean and variance.

Course Code & Title	MSBST01DSC03- SAMPLIN	IG METHODS	
Programme	M.Sc. Biostatistics	Semester	Ι
	• Explain different types of same	mpling	
Course	• Explain different errors in sampling		
Objectives	• Difference between SRSWR and SRSWOR		
	• Concept of stratified random sampling		
	• Explain systematic sampling		
	• Explain ratio and regression estimators		

DISCIPLINE SPECIFIC CORE COURSE

Modules	Content		Module Outcome
Module I: Sampling theory and Simple random sampling (15 Hours)	Introduction to sampling theory, Errors in sampling, simple random sampling (with and without replacement)-estimation of population mean and population mean square, determination of sample size, comparing efficiency of SRSWOR with SRSWR, simple random sampling with attributes.	•	Concept of sampling theory Explain different types of errors Differentiate between SRSWR and SRSWOR Explain SRS with attributes
Module II: Stratified random sampling and allocations. (15 Hours)	Stratified random sampling- estimation of population mean and variance, methods of allocation of sample size to different strata, comparison of allocations.		Concept of stratified random sampling Explain methods of allocations.

Module III:				
Complex sampling schemes (15 Hours)	Systematic sampling, circular systematic sampling. Cluster sampling, multistage sampling, multiphase sampling.	 Explain circular systematic sampling Explain cluster sampling Explain two stage cluster sampling 		
Module IV: Auxiliary information based sampling (15 Hours)	Ratio and regression methods of estimation- bias and appropriate variances, unbiased ratio estimator, difference estimator, comparison of ratio estimator with regression estimator, Probability proportional to size sampling.	 Concept of ratio estimator Explain regression estimator Explain difference estimator Concept of PPS sampling 		
	Text Books			
	1. Singh, D and Chowdhary, F.S. (1986). The			
	Survey Designs, New Age International, N			
	2. Cochran. W.G. (2007). <i>Sampling Techniques</i> , John Wiley & Sons, New			
	York.	/******		
A.	Reference Books1. Des Raj, D. and Chandhok, P. (1998). San	nle Survey Theory Narosa		
References	Publishing House, New Delhi.	ipie Suivey Theory, Thatesa		
1	2. Gupta and Kapoor (2010). <i>Fundamentals of Applied Statistics</i> . Sulthan			
2	Chand & Sons.	1 million		
	3. Murthy, M.N. (1967). Sampling Theory &	Methods. Statistical		
	Publishing Society, Calcutta.			
	4. Parimal Mukopadhyay (2012). Theory & I	Methods of Survey Sampling,		
	PHI Learning, New Delhi.			

	After successful completion of this course, student will be able to:
	1. Understand the concepts of probability and non-probability sampling.
Course	2 Understand the estimation methods for population mean, total and
Outcomes	proportion under various sampling schemes.
	3 Understand the use of auxiliary information for the estimation various
	population parameters

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation	60
Continuous Eva	luation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to test Outcomes:

1. Explain probability sampling and non probability sampling.

2. Define standard error of sample mean and explain its uses in the construction of confidence interval, testing hypothesis and to obtain p-value.

3. Explain circular systematic sampling.

4. Prove that sample mean is an unbiased estimate of population mean under stratified random sampling.

5. Distinguish between ratio estimators and regression estimators.

6. Explain the difference between the methods of SRS and varying probability scheme.

DISCIPLINE SPECIFIC CORE COURSE

Course Code & Title	MSBST01DSC04–INTRODUCT	ION TO BIOST	ATISTICS	
Programme	M.Sc. Biostatistics	Semester	Ι	
Course Objectives	 Introduce the concept of proportions, ratio and odds Introduce the concept of risk, relative risk and their measurement Explain applications of various probability models in medical research Explain concept of estimation and its applications in biostatistics Introduce the concept of hypothesis testing and applications in clinical research. 			

Modules	Content	Module Outcome
	Proportions:- Comparative Studies,	• Explain proportions, ratios
Module I: Descriptive	Screening Tests, Displaying Proportions. Rates:- Changes, Measures of Morbidity	and rates
Methods for	and Mortality, Standardization of Rates.	• Explain risk, relative risk and odds ratio.
Categorical Data	Ratios:- Relative Risk, Odds and Odds Ratio, Generalized Odds for Ordered 2xk	• Explain Mantel–Haenszel
(15 Hours)	Tables, Mantel-Haenszel Method,	Method and Standardized Mortality Ratio
A.	Standardized Mortality Ratio.	

TANNUR UI

IVERSI

Module II: Descriptive Methods for Continuous Data (15 Hours)	Tabular and Graphical Methods:- One- Way Scatter Plots, Frequency Distribution, Histogram and the Frequency Polygon, Cumulative Frequency Graph and Percentiles, Stem-and-Leaf Diagrams, Measures of Location, Measures of Dispersion, Box Plots, Special Case of Binary Data, Coefficients of Correlation, Pearson's Correlation coefficient, Nonparametric Correlation coefficients.	 Explain graphical and tabular methods Explain measures of central tendency and dispersion Explain parametric and non parametric correlations
Module III: Probability Models for data and estimation (15 Hours)	Practical applications of Normal, Binomial and Poisson distributions in bio medical research, Pair-Matched Case–Control Study, Introduction to Confidence interval Estimation, Estimation of Proportions, Estimation of Odds Ratios, Estimation of Correlation Coefficients.	 Explain various applications of probability models in medical research Estimation of proportions, odds ratio and correlation coefficients Give an introduction to Pair- Matched Case–Control Study and confidence interval estimation
Module IV: Introduction to Statistical Tests of Significance (15 Hours)	Hypothesis Tests, Statistical Evidence, Errors, Summaries and Conclusions, Rejection Region, P Values, Type I and Type II Errors, Relationship to Confidence Intervals. One- Sample Problem with Binary Data, Analysis of Pair-Matched Data, Comparison of Two Proportions, Mantel–Haenszel Method, Inferences for General Two-Way Table, Fisher's Exact Test, Ordered 2x k Contingency Tables.	 Explain basic concepts of hypothesis testing and P value Comparison of Population proportions Understand , Mantel– Haenszel Method, and Fisher's Exact Test.

	Text Book
	1. Chap T.L. (2003). Introductory Biostatistics, John Wiley & Sons.
	Reference Books
	1. Rosner, B. (2010). Fundamentals of Biostatistics, Cenage Learning,
	Harvard University.
References	2. Chernick, M.R. and Fris, R.H. (2003). Introductory Biostatistics for the
	Health Sciences, John Wiley & Sons.
	3. Peter Armitage, Geoffrey Berry, J. N. S. Matthews (2008). Statistical
	Methods in Medical Research. John Wiley & Sons
	4. Daniel, Wayne W (2009). Biostatistics: A Foundation for Analysis in the
	Health Sciences. John Wiley & Sons.
	After successful completion of this course, student will be able to:
	1. Understand the descriptive methods for different types of data.
Course	2. Understand the concepts of risk, odds and odds ratio.
Outcomes	3. Understand the concept of inferential procedures for medical research.
	4. Understand different methods of comparison of proportions for biostatistical
	studies.

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation	60	
Continuous Eva	luation	
Tests	16	
Assignment	08	
Seminar	16	
Total	40	

Sample Questions to Test Outcomes:

- 1. Define odds and odds ratio.
- 2. Explain sensitivity and specificity.
- 3. Describe relative risk. How to quantify it.
- 4. Explain Mantel-Haenszel Method.
- 5. Explain contingency table.
- 6. Describe Pair-Matched Case-Control Study.

Course Code & Title	MSBST01DSE01 - BIOSTATISTICAL COMPUTING USING (PRACTICAL)					
Programme Course Objectives		nt R-Graphics facilities				
Modules Module I: Basic Concepts of R Programming (20 Hours)	ContentIntroduction to R- Objects and their classes, operators, vectors and matrices, list and data frames, indexing and accessing data, importing and exporting data. Common built-in functions, R- Graphics.	software R Demonstra data structu arrays, mar Class func Design an R Languag	ics of statistical ate the important ures such as trix, data frames, tion etc. overview of the ge such as			
(20 Hours)	Common built-in functions, R-	R Languag	ge such as ns, Objects,			

POOL A: DISCIPLINE SPECIFIC ELECTIVES

001000

Module II: Matrices and Standard Probability Distributions (25 Hours)	Matrices, rank, determinants and inverse. Eigen values and vectors, power of matrices, g-inverse, system of linear equations, roots of algebraic and transcendental equations. Plotting of cdf and pdf of standard distributions. Generations of random samples from standard distributions, demonstrations of the sampling distributions	 How to find rank and inverse using R software. How to solve system of linear equations using R software Plotting pdf and cdf curve of different distributions
Module III: Biostatistical Sampling Methods (25 Hours)	Random samples elections, estimation of mean pro-portion, variance, confidence interval and efficiency under SRS, stratified random sampling, Various kind of allocation, stratification, estimators based on ratio and regression methods pps sampling, two stage cluster sampling, and systematic sampling.	 How to draw random samples using different sampling techniques PPS sampling techniques using R softwares Ratio and regression methods using R softwares.
Module IV: Biostatistical data analysis (20 Hours)	Measures of Morbidity and Mortality in R, Relative Risk, Odds and Odds Ratio, Generalized Odds for Ordered 2 x k Table, Mantel– Haenszel Method, Box Plots, Estimation of Proportions and Odds Ratios, testing of hypotheses.	 Compute Morbidity and Mortality in R Computation of Odds and odds ratio using R Data description using Box plot Inference procedures in R

References	 Text Books Maria D.U., Ana F.M. and Alan T.A. (2008): Probability and Statistics with R. CRC Press. Dalgaard, P. (2008): Introductory Statistics with R, (Second Edition), Springer. Reference Books Purohit, S.G, Ghore, S.D and Deshmukh, S.R. (2004): Statistics Using R. Narosa. Babak Shahbaba. (2012). Biostatistics with R: An Introduction to Statistics through Biological Data. Springer New York.
Course Outcomes	 After successful completion of this course, student will be able to: Understand various built in functions in R programming for biostatistical data analysis. Understand different functions in R programming for writing compute r programmes and develop computer programmes for different problems Understand the usage of packages in R for drawing various diagrams and computing descriptive statistics, comparison of means, ANOVA, non-parametric tests, simple correlation and regression procedures

• Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage				
End Semester Evaluation	60				
Continuous Evaluation					
Practical Tests	32				

Record	08
Total	40

Sample Questions to Test Outcomes:

1. Write an R program to create a matrix taking a given vector of numbers as input. Display the matrix.

2. Import a given dataset in R, and conduct its descriptive analysis.

3. Select a simple random sample of 50 numbers without replacement from the numbers 1 to 2000.

4. Generate a random sample of size 100 from a standard normal distribution.

5. Illustrate the law of large numbers using R.

6. Enter the given 2 matrices, and find their product.

Course Code & Title	'ING USING		
Programme	M.Sc. Biostatistics	Semester	Ι
Course Objectives	 The main focus of the coursearch question using S Illustrate different toolbox Data definition and access Apply SPSS software to c Students get awareness to technique and interpret re 	PSS xes in SPSS s and data analysis and develop different statisti o chose appropriate statist	presentation. ical tools

POOL A: DISCIPLINE SPECIFIC ELECTIVE

Modules	Content	Module Outcome
Module I: SPSS Environment, Basic Concepts of SPSS Programming (20 Hours)	Introduction to SPSS- Starting SPSS, Working with data file, SPSS windows, Menus, Dialogue boxes. Preparing the Data file, Creating data file and entering data, Defining the variables, Entering data, modifying data file, import file. Variable types in SPSS and Defining variables – Creating a Codebook in SPSS. Screening and cleaning data, Manipulation of data.	 Understand the installation and familiar with toolboxes of SPSS. Data management and modifications of data.
Module II: Preliminary Analysis in SPSS (25 Hours)	Computing Variables- Recoding (Transforming) Variables: Recoding Categorical String Variables using Automatic Recode - Sorting Data - Grouping or Splitting Data. Categorical variables, continuous variables. The Explore procedure - Frequencies Procedure – Descriptive - Compare Means - Frequencies for Categorical Data, different statistical distributions	 Working with Data types Recoding and sorting Descriptive statistics Explore procedure, graphics in SPSS
Module III: Inferential Statistics (25 Hours)	Pearson Correlation, Chi-square Test of Independence – Inferential Statistics for Comparing Means: One Sample t Test, Paired Samples T Test, Independent Samples T Test, One-Way ANOVA. Two way ANOVA, Multivariate ANOVA.	 Compute and interpret correlation coefficients Learn how to conduct various statistical tests using SPSS Preparing ANOVA

Module IV: Non- Parametric statistics (20 Hours)	Independent Chi square Test, Mann- Whitney test, Wilcoxon signed rank test, Kruskal- Wallis test. Interpreting the output of tests, p-value computation.	 Learn how to perform non parametric tests Get p value of various tests Interpretation of test results
References	 <i>Text Books</i> 1. Hinton, P. R., Brownlow, C, Mc Murray, <i>SPSS Explained</i>, Routledge, Taylor and F <i>Reference Books</i> 1 Field, A. (2011); <i>Discovering Statistics U</i> Publications. 2 William E. Wagner. (2015). Using IBM S methods and social science statistics, Fift Publications, Inc. 	Francis group, New York. Using SPSS, Sage
Course Outcomes	 After successful completion of this course, str 1. Build capacity to analyzing complex in of SPSS. 2. Understand with the tool box of statistic 3. Summarize variables using frequencies 4. Understand to producing cross tabulation significant relationships with chi square 5. Understand the usage of assessing relation continuous variables through plots and 	formation with the help cal software SPSS and descriptive analysis. on tables and testing for e test. ionships between

• Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation	60
Continuous Eva	luation
Practical Tests	32
Record	08
Total	40

Sample Questions to Test Outcomes:

1. Compute t-test for difference of means on a given continuous variable, based on a categorical variable.

2. Compute descriptive statistics of a given continuous variable of a dataset.

3. Perform an appropriate ANOVA for the given data.

4. Perform appropriate non parametric test for the given data.

5. Load the given external spreadsheet data into SPSS, and obtain the pie chart, histogram of the variables.

6. Perform MANOVA for the given data set.

28

		SECOND SE	MES	TER					
Sl No	Course Code Title of Paper	Title of Paper	Contact Hours/Week		Marks				
			L	T/S	P	ESE	CE	Total	Credits
	DI	SCIPLINE SPECIFIC CORE	CO	URSES	5 (DC)	E)			
2.1	MSBST02DSC05	Biostatistical Inference	4	61	1	60	40	100	4
2.2	MSBST02DSC06	Applied Regression Analysis	4	1	\bigvee	60	40	100	4
2.3	MSBST02DSC07	Statistical Epidemiology	4	1	1	60	40	100	4
2.4	MSBST02DSC08	Survival Analysis	4	1		60	40	100	4
	1	DISCIPLINE SPECIFIC ELI	ECTI	VES (I	DSE)				
2.5	MSBST02DSExx	Elective-II-DSE (One course has to be chosen from Pool B)		2	6	60	40	100	3
		ABILITY ENHANCEMENT	COU	RSE(A	EC)		I		
2.6	MSBST02AECxx	Offered to other Departments. (One course has to be chosen from Pool C)	2				100	100	2
		(To be obtained from other Departments)	-					*	2
I	5	SKILL ENHANCEMENT C	COUF	RSE(SE	EC)	A	1		I
2.7	MSBST02SECxx	Offered to other Departments. (One course has to be chosen from Pool D)	2	200	5	60	40	100	2
		(To be obtained from other Departments)	-					*	2
		Total Credits	1	1	1	1	1		23

L=Lecture, T/S=Tutorials/Seminar, P/I=Practical/Internship, CE =Continuous Evaluation, ESE = End Semester Evaluation.

(*Note: Evaluation is determined by respective Department)

Sl No		POOL B DISCIPLINE SPECIFIC EI	LECTIV	E (DS)	E)			
2.5.1	MSBST02DSE03	Biostatistical Computing Using SPSS-II (Practical)	2	6	60	40	100	3
2.5.2	MSBST02DSE04	Biostatistical Computing Using SAS-I (Practical)	2	6	60	40	100	3
SI No		POOL C ABILITY ENHANCEMENT	COURS	SE (AE	CC)			
2.6.1	MSBST02AEC01	A foundation course in LaTex for scientific documentation	2	6	60	40	100	2
2.6.2	MSBST02AEC02	Basic Statistical data analysis using EXCEL	2	6	60	40	100	2
SI No		POOL D SKILL ENHANCEMENT	COURS	E (SE	C)			
2.7.1	MSBST02SEC01	Exploratory Data Analysis Using SPSS	2	6	60	40	100	2
2.7.2	MSBST02SEC02	Regression Analysis UsingSPSS	2	6	60	40	100	2

SECOND SEMESTER M.Sc. BIOSTATISTICS PROGRAMME

Course Code & Title	MSBST02DSC05-BIOSTATISTICAL INFERENCE			
Programme	M.Sc. Biostatistics	Semester II		
Course Objectives	 parameter such as sufficient efficiency. Understanding the notion of for sufficiency, minimal an Derivation of the Cramer-H existence of MVB estimated Lehmann-Scheffe theorem To introduce the concept of significance level, power To introduce the concept of simple hypothesis against probability ratio test for term 	of uniformly most powerful test for testing simple alternative and obtain sequential esting the hypothesis. I likelihood ratio test and confidence		

Modules	Content	Module Outcome
	Unbiasedness, consistency,	• Derive the important
<1/	consistent asymptotically normal	properties of estimators
distance of the second se	(CAN) estimators, efficiency,	• Determine the sufficient
Module I:	sufficiency, invariance property of	statistic
Properties of	consistent estimators, Fisher-	• Determine consistent
estimators.	Neymann factorization theorem for	estimators and consistent
	sufficiency (proof for discrete	and asymptotically normally
(15 hours)	distributions only), joint sufficient	distributed estimators.
	statistics, minimal and complete	• Identify efficient
	sufficient statistic.	estimators.

	Minimum variance unbiased	• State and prove Cramer-
	estimator (MVUE), Likelihood and	Rao inequality.
Module II:	score functions. Fisher information,	Examples of Minimum
Minimum	Cramer-Rao inequality and its	variance bound estimator.
Variance	applications, Cramer–Rao Lower	Apply Rao-Blackwell
Unbiased	Bound (CRLB), Minimum variance	and Lehmann-Scheffe
Estimation.	bound unbiased estimator (MVB).	theorems to find UMVUE.
Estimation.	Rao-Blackwell and Lehmann-	A V
(15 hours)	Scheffe theorems. Method of	• Understand the concept
(15 hours)	moments and method of MLE and	of MLE and its properties.
		Examples of moment
	their properties.	estimators.
	Null and alternative hypotheses,	• Identify null, alternative,
	simple and composite hypotheses,	simple and composite
	two types of errors in testing of	hypothesis
Module III:	hypothesis, p-value, level of	• Find critical region, size
Tests of	significance and size of test, power	and power of the test .
Hypotheses and	function, Neymann-Pearson lemma,	Apply Neymann-
Most Powerful	most powerful and uniformly most	Pearson lemma to find most
Tests.	powerful tests. Sequential	powerful test.
	Probability Ratio Test	• Derive SPRT for test the
(15 hours)	(SPRT)(Concept only).	parameters of normal
A.		distribution, exponential and
	5	Poisson distributions,
	7.	binomial distribution.
-1/	Different parametric test (Z ,t and F	Apply different parametric
1	tests), large sample tests. Likelihood	test for various real life
Module IV:	ratio test, monotone likelihood ratio	applications.
Parametric test,	property. Confidence interval	• Understand likelihood ratio
Likelihood ratio	estimation of mean and variance,	property and its applications.
test and SPRT	difference of mean and population	• Compute the confidence
(15 hours)	proportion, and difference of	interval for mean, population
	population proportion.	proportional and variance.

	Text Books		
	1. Hogg, R. V., McKean, J. W., & Craig, A. T. (2013). Introduction to		
	Mathematical Statistics. Pearson Education India.		
	2. Vijay K. Rohatgi, A. K. Md. Ehsanes Saleh (2015). An Introduction to		
	Probability and Statistics, 3rd Edition, John Wiley and Sons, NewYork.		
	3. Mood, A. M., & Graybill, F. A. (6). Boes, DC (1974). Introduction to		
References	the Theory of Statistics. Third edition. McGraw Hill.		
	Reference books		
	1. Casella, G. and Berger, R.L. (2002). <i>Statistical Inference</i> , <i>Second Edition</i> , Dux bury, Australia.		
	2. Lehman, E. L. (1986): <i>Testing of Statistical Hypotheses</i> . John Wiley, New York.		
	3. Lehmann, E. L(1983). <i>Theory of Point Estimation</i> , John Wiley and Sons, New York.		
	After successful completion of this course, student will be able to:		
	1. Understand the concepts of Sufficiency and Completeness		
	2. Understand the concepts of Minimum Variance Unbiased		
	Estimation.		
Course	3. Understand various estimation methods and applications in real		
Outcomes	life problems		
5	4. Apply various parametric and sequential testing procedures		
A	to deal with real life problems.		
1	5. Understand Most Powerful Tests for testing simple null hypothesis		
< 1	and developing MP tests for different problems.		
1.1			

• Lecturing, Hands on Training, Visualization, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering ASSESSMENT RUBRICS

Components	Weightage
End Semester	60
Evaluation(ESE)	
Continuous Eva	luation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

- 1. State factorization theorem for sufficiency.
- 2. Let $X_1, X_2, ..., X_n$ be a random sample of n observations from Gamma distribution with shape parameter θ . Find sufficient statistic for θ .
- 3. State and prove Basu's theorem.
- 4. Let X₁, X₂, ..., X_n be random sample from a Poisson population with parameter λ . Show that the \overline{X}^2 is a UMVUE for λ^2 .
- 5. Let $X_1, X_2, ..., X_n$ be a random sample of size n observations from beta first kind distribution with parameter α and β . Find the estimators of α and β by method of MLE.
- 6. Let p be the probability that a coin will fall head in a single toss in order to testH₀ : p = 1/2against H₁ : p = 3/4. The coin is tossed 5 times and H₀ is rejected if more than 3 heads are obtained. Find the probability of type-I error and power of the test.
- 7. Define a most powerful test and explain the utility of Neyman-Pearson lemma.
- 8. Given the nine sample values 4.5, 6.5, 3.8, 4.2, 7.7, 8.5, 9.4, 5.3, 3.9 from a normal distribution with mean μ and variance 4. Find the best critical region for testingH₀ : μ = 4 versus H₁ : μ = 5 of size 0.05. Also calculate the power of the test.
- Obtain OC function for testing H₀ : p = p₀ versus H₁ : p = p₁ using SPRT with strength (α, β) based on observations from b(n, p).
- Show that the likelihood ratio test for testing the equality of variances of two normal distributions is the usual F-test.

DISCIPLINE SPECIFIC CORE COURSE

Course Code & Title	MSBST02DSC06-APPLIED REGRESSION ANALYSIS		
Programme	M.Sc. Biostatistics	Semester II	
Course Objectives	 Apply principle of lead in simple linear regress Describe multiple line model adequacy. Identify multicollinear problem of estimation and also Identify auto Explain polynomial resonance Understand the notion Explain generalized line 	ear regression models and its properties and rity problem, its consequences, discuss the of parameters when multicollinearity occurs correlation and its consequences. egression in one and several variables.	

Modules	Content	Module Outcome
	The simple linear regression	• Explain simple linear
5	models, least square estimation,	regression model
Module I:	statistical assumptions and	• Describe least square
Linear	properties of estimators, standard	estimators.
Regression	error of estimates, tests of	• Articulate to inference
Models	significance and confidence	regarding regression
(15 Hours)	intervals for the parameters, error	parameters.
	and residual plots.	• Explain ANOVA.
	Multiple regression models, OLS	• Explain multiple linear
Module II:	and ML estimators, testing and	regression models.
Regression	prediction. Multicollinearity,	• Explain multicollinearity.
Diagnostics	heteroscedasticity, autocorrelation:	• Discuss detection and
(15 Hours)	their nature, consequences,	remedial measures of

	detection, remedial measures and	multicollinearity.
	estimation in the presence of them.	• Explain heteroscedasticity
		and remedial measures of
		heteroscedasticity.
Module III:	Polynomial regression in one and	• Explain polynomial
Polynomial and	several variables. Linearization	regression.
nonlinear	transforms, Diagnostic checks and	• Discuss non-parametric
regression	correction. Nonparametric	regression.
(15 Hours)	regression and concept of spline	• Explain concept of spline
	smoothing.	smoothing.
	Generalized linear models.	Discuss generalised linear
Module IV:	Logistic regression, Poisson	model.
Non-Linear	Regression. Estimation, model	Explain logistic
Regression	adequacy of GLM and diagonostic	regression.
(15 Hours)	tests.	• Introduce the concept of
		Poisson regression.
References	 Text Books McCullagh, P. (2019). General Kingdom: CRC Press. Hosmer, D.W. and Lemeshow, S. (19 John Wiley. Montgomery, D. C, Peek, E.A. Introduction to Linear Regression Art. Reference books Seber, G. A. F. and Lee, A. J. (20 Wiley Draper ,N.R. and Smith,H.(1998): Ed. John Wiley. Goon,Gupta,DasGupta(2001):An Out World Press. 	989): <i>Applied Logistic Regression</i> , and Vining, G.G. (2006): <i>nalysis</i> , John Wiley. 03): <i>Linear Regression Analysis</i> , <i>Applied Regression Analysis</i> , 3 rd

	After successful completion of this course, student will be able to:
	1. Understand various regression models including logistic regression
	models.
Course	2. Understand consequences of multicollinearity, heteroscedasticity,
Course	autocorrelation, their detection and remedial measures.
Outcomes	3. Apply statistical techniques to model relationships between
	variables and make predictions.
	4. Acquire knowledge of various advanced regression models
	with applications in biostatistics.

• Lecturing, Hands on Training, Visualization, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester	60
Evaluation(ESE)	
Continuous Ev	aluation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

1. Derive the OLS estimators of intercept and slop coefficients of a simple linear regression model.

2. Explain measure of goodness of fit in regression analysis. obtain its relationship with correlation coefficient.

- 3. Define multicollinearity.
- 4. How to detect heteroscedasticity using Spearman's rank correlation test.
- 5. Discuss Durbin-Watson test for autocorrelation.
- 6. Explain the difference between R^2 and adjusted R^2 in multiple regression. Mention its uses

- 7. What is logistic regression model?
- 8. Explain link function and linear predictor?
- 9. Explain the parameter estimation and inference of GLM.
- 10. Explain orthogonal polynomial regression.

Course Code & Title	MSBST02DSC07-STATIS	FICAL EPIDEMIOLOGY
Programme	M.Sc. Biostatistics	Semester II
	• To understand basic concept	ots of epidemiology and explain different
	study designs in epidemiolo	ogy.
	• Identifying achievements in	epidemiology and measuring health and
	disease.	
	• To aquire the knowledge of	cohort study designs, case control study
Course	designs.	
Objectives	• Develop the knowledge of	various matched case control studies and
	cross over study designs.	
	• To know about statistical co	oncepts and inference.
	• Understand relationship bet	ween variables.
	• State Mendal's law and esti	mation of allele frequency, estimation of
	allele frequencies, Hardy-W	/einberg law.
5	• Introduce the concept of de	tection and estimation of linkage,
- A.	inheritance of quantitative t	raits, stochastic models of carcinogenesis.

DISCIPLINE SPECIFIC CORE COURSE

Modules	Content	Module Outcome
A. C.	Basic concepts of	
	epidemiology: definition and	• Explain the basic
Module I:	scope of epidemiology,	concepts of epidemiology.
Basic concepts	achievements in epidemiology,	• Measuring health and
of	measuring health and disease,	disease
Epidemiology	definition of health and disease,	• Comparing disease
(15 Hours)	measures of disease frequency,	occurrence.
	comparing disease occurrence.	

Module II: Study designs in epidemiology (15 Hours)	Types of study: observations and experiments, observational epidemiology, cohort study designs, case control study designs, randomized, field trails, control trials, potentials errors in epidemiological studies, ethical issues	 Explain different study designs in epidemiology. Understand various cohort and case control studies in biostatistics.
Module III: Exploratory analysis (15 Hours)	Distribution and summary measures: distribution, measures of central tendency, measures of variability, normal and log normal distributions, estimation, testing, CI, ANOVA, relationship between two variables: chi- square test, correlation, regression, logistic regression.	 To understand statistical concepts. To know about relationship between two variables.
Module IV: Clinical epidemiology (15 Hours)	Concept of cause, establishing the cause of disease, scope of prevention, levels of prevention, Introduction to clinical epidemiology.	 Understand the concept of Concept of cause. Identifying the scope of prevention. Understand the basic concepts of clinical epidemiology.
References	 Text Books 1. Beaglehole, R., Bonita, R. and <i>Epidemiology</i>. World Health Organiz 2. Newman,S.C.(2001).<i>Biostatistical M</i>. Wiley & Sons, New York. 3. Virasakdi, C. (2010). <i>Analysis of Epi Epicalc</i>. Epidemiological Unit, Songle Reference books 	ation, Geneva. Methods in Epidemiology. John demiological Data Using R and
	1. Rothan, K. J., Greenland, S. and Lash Epidemiology, 3 rd Edition. Wokers Kl	

	2. Clayton, D.and Hills, M.(1993). <i>Statistical Methods in Epidemiology</i> .
	Oxford University Press.
	After successful completion of this course, student will be able to:
Course	1. Understand Basics of epidemiology.
Outcomes	2. Understandtypes of study used in epidemiology
Outcomes	3. Understand the concept of clinical epidemiology.
	4. Identify the scope of cause and prevention of disease.

• Lecturing, Hands on Training, Visualization, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering ASSESSMENT RUBRICS

Weightage	
60	
luation	
16	
08	
16	
40	

Sample Questions to Test Outcomes:

- 1. Explain Basic concepts of epidemiology along with its scope.
- 2. Narrate the notion of measures of disease frequency.
- 3. Differentiate between health and disease.
- 4. Elaborate various types of study in epidemiology.
- 5. Differentiate between cohort study and case control study.
- 6. Describe the potential error in epidemiological studies.
- 7. Define ANOVA and mention its application.

8. Why we need chi-square test? Elaborate the concept.

9. Explain the concept of clinical epidemiology.

10. Differentiate between scope of prevention and levels of prevention in epidemiological study.

Course Code & Title	MSBST02DSC08-SURVIVAL ANALYSIS	
Programme	M.Sc. Biostatistics	Semester II
	and the second s	ion of survival analysis
	and the second s	ons of survival function, hazard function, ons and other aging concepts .
	• Understand and examin	the properties of standard lifetime
Course	distributions.	
Objectives	• Develop the concept of	nonparametric tests like KS test, sign test,
	Mann-Whitney and Wild	coxon U tests.
	• Introduce the concepts o	f censoring and truncation and its various
	classifications.	
	• Introduce the notion of H	Estimating survival rates using large scale data
	like DHS, NFHS, DLHS,	etc. Comparing survival curves.
	• Introduce the notion of	Kaplan-Meier estimation technique, life tables,
. A.	Mantel-Haenszel test.	- /. A

Modules	Content	Module Outcome
Module I Basics of survival analysis (15 Hours)	Basics of survival analysis- discrete and continuous time models, survival function, hazard rate function, probability density function, mean residual life time. Aging classes-IFR, IFRA and their duals, Bathtub failure rate.	 Understand the basic concepts and ideas of survival analysis. Understand the basic concepts of ageing classes.
Module II Life	Life distributions-exponential, Weibull, lognormal and gamma distributions,	• Examine the properties and methods for standard

distributions	characterizations. Nonparametric tests-	survival time distributions.	
(15 Hours)	Kolmogorov-Smirnov test, sign test and	• Understand the basic	
	signed-rank test, Mann-Whitney,	concepts of nonparametric	
	Wilcoxon U test, chi- square test for	tests.	
	goodness of fit, test for independence of		
~	attributes.	1	
	Concepts of censoring Mechanism -Type-	X 2	
	I, Type-II and random censoring,	• Estimate survival	
	Progressive censoring, Truncation,	functions using parametric	
Module III	Methods for truncated and interval	and non-parametric	
Censoring and	censored data. Likelihood construction and	methods.	
Truncation	estimation of Censored and Truncated	• Understand the basic	
(15 Hours)	Data. Estimating survival rates using large	concepts of censoring and	
	scale data like DHS, NFHS, DLHS, etc.	truncations.	
	Comparing survival curves.		
	Kaplan-Meier estimation technique,	Apply and interpret	
Module IV	life tables, Mantel-Haenszel test.	regression models for survival	
Estimation of	Interval estimation of survival	data .	
Survival	probabilities. Introduction to	• Understand the	
function	survival regression. Cox	concept of Cox-Proportional	
(15 Hours)	proposional hazard model.	hazard model.	
5		<u></u>	
- A.	Text Books	AA	
- / N	1. Lawless, J.F. (2003): Statistical Meth	ods for Lifetime (Second	
2-1	Edition) ,John Wiley & Sons Inc., Nev	v Jersey.	
1	2. Kalbfleisch, J. D. and Prentice, R.L	(1980): The Statistical	
	Analysis of Failure Time Data, John Wiley & Sons Inc. New		
References	Jersey.		
	3. Moore, D.F. (2016): Applied Surv	ival Analysis Using R,	
	Springer.		
	Reference Books		
	1. Klein J.P. and Moeschberger M.L. (2	2003) Survival Analysis -	

	Springer-Verlag, New York.
	2. Miller, R. G.(1981): Survival Analysis, John Wiley & Sons Inc.
	3. Bain, L. G.(1978): Statistical Analysis of Reliability and Life testing
	Models, Marcel Decker.
	4. Cox, D.R and Oakes, D.(1984): Analysis of Survival Data. Chapman
-	and Hall.
	5. Fraser, D.A.S.(1957): Non-parametric Methods in Statistics, Wiley,
	New York.
	After successful completion of this course, student will be able to:
	1. Understand various lifetime probability distributions and
Course	their structural properties
Course	2. Understand different methods for the estimation of
Outcomes	survival function.
	3. Conduct analysis of life time data.
	4. Apply statistical techniques to model lifetime data and make predictions.

• Lecturing, Hands on Training, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation(ESE)	60
Continuous F	Evaluation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

- 1. Define survival function and hazard function.
- 2. Explain aging classes and their dual.
- 3. What do you mean by bathtub failure rate?
- 4. Explain any three life distributions.
- 5. What is goodness of fit test? Explain any two goodness of fit test.
- 6. Define censoring. Elaborate various types of censoring.
- 7. Explain truncation. Differentiate between censoring and truncation.
- 8. Explain Kaplan-Meier estimation technique.

POOL B: DISCIPLINE SPECIFIC ELECTIVE COURSE (Practical)

Course Code &	MSBST02DSE03- BIOSTATISTICAL COMPUTING USING SPSS –							
Title	II (Practical)							
Programme	M.Sc. Biostatistics Semester II							
	• To introduce some advanced sta	atistical computir	ng techniques in					
Course	applied statistics to extract information and visualization thereby							
Objectives	enabling them to perform data analysis effectively and efficiently							
	in SPSS.							
	• Illustrate different statistical techniques based on all the elective							
	course in second semester.							

Modules	Content	Module Outcome			
A	Statistical Computing II is a	• Describe different statistical			
	practical course. The practical	technique to solve problems			
-)	is based on all the elective	coming under all the elective			
2	courses in the second semester. courses in second sem				
Course	After successful completion of this course, student will be able to:				
Outcomes	1. Equipped with different theoretical methods in biostatistics to				
	achieve the objectives.				
	2. Enhanced with the basic concepts of biostatistical theories besides				
	developing their ability to handle	real world problems with large			
	scale data.				

- Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION
 - Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation	60	
Continuous Eval	uation	
Practical Tests	32	
Record	08	
Total	40	

POOL B: DISCIPLINE SPECIFIC ELECTIVE COURSE (Practical)

Course Code &	MSBST02DSE04- BIOSTATISTICAL COMPUTING USING SAS –						
Title	I (Practical)						
Programme	M.Sc. Biostatistics Semester II						
	• To introduce some advanced sta	atistical computi	ng techniques in				
Course	applied statistics to extract information and visualization thereby						
Objectives	enabling them to perform data analysis effectively and efficiently						
- A.	in SAS programming.						
	• Illustrate different statistical techniques based on all the elective						
<1/	course in second semester.						
1	UDININE	~/	1				

	Module Outcome	
Statistical Computing II is a	• Describe different statistical	
practical course. The practical is	technique to solve problems	
based on all the elective courses	coming under all the elective	
in the second semester.	courses in second semester.	

	After successful completion of this course, student will be able to:					
	1.Equipped with different theoretical methods in biostatistics to					
Course	achieve the objectives.					
Outcomes	2. Enhanced with the basic concepts of biostatistical theories besides					
	developing their ability to handle real world problems with large					
	scale data.					

- Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION
 - Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage					
End Semester Evaluation	60					
Continuous Evaluation						
Practical Tests	32					
Record	08					
Total	40					

POOL C:- List of Ability Enhancement Courses (Offered to other Departments)

ABILITY ENHANCEMENT COURSE (AEC)

Course code: MSBST02AEC01

Name of the Course: A foundation course in LaTex for scientific documentation.

Department Offering the Course: Department of Statistical Sciences

Mode of Delivery: Hybrid

Credit Distribution, Eligibility and Pre-Requisites of the Course

	Cont	tact hours	per week		Pre-requisite
Credits	Lecture	Tutorial	Practical/		(if any)
	Lecture	Tutoriai	Internship		(II ally)
2	1	1	2		

Skill Outcomes: To introduce students with a software that is being widely used for scientific typesetting, To make students know importance of this software for publishing research articles, letters, project reports, books and beamer/slide presentation and thereby help them to be comfortable with the software .

Course Contents:

Module 1: Installation of Kile and MikeTeX. Class and packages. Latex programming and commands, sample packages. Error messages, Some sample errors, list of LaTeX error messages.

Module 2: Fonts, symbols, Indenting, paragraphs, line spacing, word spacing, titles and subtitles. Document class, page style, parts of the documents, table of contents. Command names and arguments, environments, declarations. Theorem like declarations, comments within text.

Module 3: Mathematical environments, math mode, mathematical symbols. Graphic package, multivalued functions, drawing matrices. Tables, tables with captions. References to figures and tables in text.

Module 4: Picture environments. Extended pictures, other drawing packages. Preparing book, project report in LaTeX, LaTeX Beamer for Technical Presentations.

Suggested Readings:

- Kottwitz, S. (2021). LaTeX Beginner's Guide: Create Visually Appealing Texts, Articles, and Books for Business and Science Using LaTeX. United Kingdom: Packt Publishing.
- 2. Lamport (1994). Latex: A Document Preparation System, 2/E. India: Pearson Education.

3. Kopka, H., Daly, P. W. (2003). *Guide to LaTeX*. United Kingdom: Pearson Education. **TEACHING LEARNING STRATEGIES**

• Hands on training, Lecturing, Visualization, Team Learning.

MODE OF TRANSACTION

• Lab session, Lecture, Seminar, Discussion, Questioning and Answering

Assessment Rubrics: Evaluation by Department

Sample Questions to Test Outcomes:

- 1. How do you install Kile and MiKTeX for LaTeX editing and compilation, and what are their roles in the LaTeX ecosystem?
- 2. Explain the concept of classes and packages in LaTeX, and how they contribute to document formatting and customization.
- 3. Discuss LaTeX programming and commands, including sample packages, and common error messages encountered during compilation.
- 4. What are some sample errors in LaTeX, and how can they be addressed? Provide a list of common LaTeX error messages.
- 5. Describe the role of fonts and symbols in LaTeX, and how they can be customized for document appearance.
- 6. How do you manage indentation, paragraphs, line spacing, and word spacing in LaTeX documents?
- 7. Discuss titles, subtitles, document classes, page styles, and the creation of table of contents in LaTeX.
- 8. Explain command names and arguments, environments, and declarations in LaTeX, including theorem-like declarations and comments within text.
- 9. What are mathematical environments and math mode in LaTeX, and how can mathematical symbols be utilized?
- 10. Describe the usage of the graphic package in LaTeX, including drawing matrices, creating tables with captions, and referencing figures and tables within text.

POOL C: ABILITY ENHANCEMENT COURSE -II

Course code: MSBST02AEC02

Name of the Course: Basic Statistical data analysis using EXCEL.

Department Offering the Course: Department of Statistical Sciences

Mode of Delivery: Hybrid

Credit Distribution, Eligibility and Pre-Requisites of the Course

Credits	Contact hours per week	Eligibility	Pre-requisite
---------	------------------------	-------------	---------------

48 | Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	Lastura	Tutorial	Practical/	Criteria	(if any)
	Lecture	Tutoman	Internship		
2	1	1	2		Basic knowledge of statistics

Skill Outcomes:

To build a strong understanding on the Basics of Microsoft Excel, To understand data crunching, Understand core analytic techniques that work in Excel, Data visualization in Excel.

Course Contents:

Module 1: Excel Introduction, Basic Navigation Tab, Concept of Cell and Cell address, row Column concept, Basic mathematical and statistical functions in Excel.

Module 2: Min, Max, Trim, Lower, Upper, Proper, Left, Right, Mid Exact, Randbetween, Rand, Len (Length of character) Paste special, SQRT, If function with Example of IF, More function like And, OR with their example, Conditional Formatting basic and advance level with OR, AND, Nested IF function, Index, Offset, Match.

Module 3: Graphics in excel-pie chart, bar chart, multiple bar diagram, sub-divided bar diagram, histogram, line chart, scatter diagram, box plot.

Module 4: Median, Mode, Standard Deviation (SD), Correlation, Large, Small, Pivot Table, Pivot Charts, Slicing, Sparkling.

Suggested Readings:

- 1. Linoff, Gordon S (2015). Data analysis using SQL and Excel. John Wiley & Sons.
- 2. Guerrero, Hector, Rauscher Guerrero, and Rauscher (2019). *Excel data analysis*. Springer International Publishing.

TEACHING LEARNING STRATEGIES

• Hands on training, Lecturing, Visualization, Team Learning.

MODE OF TRANSACTION

• Lab session, Lecture, Seminar, Discussion, Questioning and Answering

Assessment Rubrics: Evaluation by Department

Sample Questions to Test Outcomes:

- 1. What is the purpose of Excel and how is it commonly used in data management and analysis?
- 2. Describe the basic navigation tab in Excel and explain the concept of cells, cell addresses, rows, and columns.
- 3. Discuss basic mathematical and statistical functions in Excel, including examples of their usage.
- 4. Explain the functions MIN, MAX, TRIM, LOWER, UPPER, PROPER, LEFT, RIGHT, MID, EXACT, RANDBETWEEN, RAND, and LEN, and how they are used in Excel.
- 5. How does the Paste Special function work in Excel, and what are its common applications?
- 6. Walk through the usage of the SQRT function and demonstrate its application in Excel.
- 7. Provide examples of the IF function in Excel and discuss its importance in conditional logic.
- 8. Explain the functions AND and OR in Excel with examples, and discuss their usage in conjunction with conditional formatting.
- 9. What are nested IF functions in Excel, and how are they implemented? Provide examples.
- 10. Discuss advanced functions such as INDEX, OFFSET, MATCH, and their applications in Excel data analysis and manipulation.
- 11.

POOL D:- List of Skill Enhancement Courses (Offered to other Departments) SKILL ENHANCEMENT COURSE (SEC)-I

Course code: MSBST02SEC01

Name of the Course: Exploratory Data Analysis Using SPSS

Department Offering the Course: Department of Statistical Sciences

Mode of Delivery: Hybrid

Credit Distribution, Eligibility and Pre-Requisites of the Course

	Contact hours per week				Pre-requisite
Credits	Lecture	Tutorial	Practical/	Eligibility Criteria	(if any)
	Lecture	Internship		(II ally)	
					Knowledge of basic
2	1	1	2	0.821.0	statistics

Skill Outcomes: To introduce students with a software that is being widely used for Statistical data analysis. To make students know importance of this software for data analysis in research articles and thereby help them to be comfortable with the software.

Course Contents:

Module 1: What is SPSS?, Opening SPSS, Layout of SPSS, Structure of SPSS Exiting SPSS, inputting data, An overview of SPSS.

Module 2: Exploring data distributions using descriptive statistics, Creating frequency distributions and summary tables, Generating basic visualizations (e.g., histograms, box plots) in SPSS.

Module 3: Understanding correlation and covariance, Performing correlation analysis in SPSS, Introduction to linear regression and its application in SPSS, Understanding hypothesis testing principles, Conducting hypothesis tests in SPSS, Interpreting SPSS output for hypothesis testing.

Module 4: Generating various types of charts and graphs in SPSS, Customizing visualizations for clarity and impact, exploring the SPSS Chart Builder tool.

Suggested Readings:

- 1. Landau, S., & Everitt, B. S. (2003). *A handbook of statistical analyses using SPSS*. Chapman and Hall/CRC.
- 2. Tukey, J. W. (1977). Exploratory data analysis (Vol. 2).
- 3. Aldrich, J. O. (2018). Using IBM SPSS Statistics: An interactive hands-on approach. Sage Publications.

TEACHING LEARNING STRATEGIES

• Hands on training, Lecturing, Visualization, Team Learning.

MODE OF TRANSACTION

• Lab session, Lecture, Seminar, Discussion, Questioning and Answering

Assessment Rubrics: Evaluation by Department Sample Questions to Test Outcomes:

- 1. What is the purpose of SPSS and how does it contribute to statistical analysis?
- 2. Describe the layout and structure of SPSS interface, including its main components and functions.
- 3. How do you open and exit SPSS, and what considerations should be taken into account?
- 4. Explain the process of inputting data into SPSS and discuss common formats accepted.
- 5. What are descriptive statistics, and how can they be used to explore data distributions in SPSS?
- 6. Describe the steps involved in creating frequency distributions and summary tables using SPSS.
- 7. How can basic visualizations such as histograms and box plots be generated in SPSS, and what insights can they provide?
- 8. What are correlation and covariance, and how are they calculated and interpreted in SPSS?
- 9. Discuss the principles of hypothesis testing and how it is conducted in SPSS.
- 10. Explain how to customize visualizations for clarity and impact in SPSS, and explore the functionalities of the SPSS Chart Builder tool.

POOL D: SKILL ENHANCEMENT COURSE (SEC)-II

Course code: MSBST02SEC02

Name of the Course: Regression Analysis Using SPSS

Department Offering the Course: Department of Statistical Sciences

Mode of Delivery: Hybrid

Credit Distribution, Eligibility and Pre-Requisites of the Course

	Cont	tact hours j	per week		Pre-requisite	
Credits	_	Tutorial	Practical/	Eligibility Criteria	(if any)	
	Lecture	Tutorial	Iutorial	Internship		(II ally)

				Basic knowledge in
2	1	1	2	regression.

Skill Outcomes: To introduce students with software that is being widely used for regression analysis. To make students know importance of this software for data analysis in research articles and thereby help them to be comfortable with the software.

Course Contents:

Module 1: What is SPSS?Opening SPSS, Layout of SPSS, Structure of SPSS Exiting SPSS, inputting data, an overview of SPSS.

Module 2:Introduction to SPSS regression procedures, Importing and preparing data for regression analysis, Overview of the SPSS regression dialog box, Conducting simple linear regression in SPSS, Interpreting regression output in SPSS, Assumptions and diagnostics in simple linear regression

Module 3: Understanding and formulating multiple linear regression models, Conducting multiple linear regression analysis in SPSS, Interpreting output and assessing model fit

Module 4: Assumption testing for multiple regression, Dealing with multicollinearity in SPSS. Interpreting diagnostic plots and statistic, Organizing and documenting regression analysis in SPSS, Creating comprehensive reports with SPSS output, Best practices for presenting regression findings to diverse audiences

Suggested Readings:

- 1. Landau, S., & Everitt, B. S. (2003). *A handbook of statistical analyses using SPSS*. Chapman and Hall/CRC.
- **2.** Aldrich, J. O. (2018). Using IBM SPSS Statistics: An interactive hands-on approach. Sage Publications.
- **3.** Chatterjee, S., & Hadi, A. S. (2013). *Regression analysis by example*. John Wiley & Sons.

TEACHING LEARNING STRATEGIES

- Hands on training, Lecturing, Visualization, Team Learning. MODE OF TRANSACTION
- Lab session, Lecture, Seminar, Discussion, Questioning and Answering Assessment Rubrics: Evaluation by Department

Sample Questions to Test Outcomes:

- 1. What are the key components of SPSS and how do they contribute to statistical analysis?
- 2. How do you input data into SPSS and what are the common formats accepted?
- 3. Describe the process of exiting SPSS and any considerations to keep in mind.
- 4. What are the steps involved in importing and preparing data for regression analysis in SPSS?
- 5. Explain the regression dialog box in SPSS and its various options for analysis.
- 6. Walk through the process of conducting simple linear regression in SPSS, including data input and interpretation of results.
- 7. What are the assumptions and diagnostics involved in simple linear regression analysis, and how can they be assessed in SPSS?

		THIRD SE	MEST	ER					
SI No	Course Code	Title of Paper	Contact Hours/Week		Mai	rks			
			L	T/S	P	ESE	CE	Total	Credits
	DIS	SCIPLINE SPECIFIC CORI	E COU	JRSES	(DSC	C)			
3.1	MSBST03DSC09	Design of Experiments and Quality Control	4	4	ý	60	40	100	4
3.2	MSBST03DSC10	Analysis of Clinical Trials	4	1		60	40	100	4
		DISCIPLINE SPECIFIC EL	ECTI	/ /ES (D	SE)				
3.3	MSBST03DSExx	(One course has to be chosen from Pool E)	3	2		60	40	100	3
3.4	MSBST03DSExx	Elective-II (DSE) (Any two courses have to be chosen from Pool F)	3	2		60	40	100	3
	INTE	ERDISCIPLINARY ELECT	IVE C	DURSI	E (ID	C)*			
3.5	MSBST03IDCxx	IDC Elective (One course has to be chosen from Pool G) (Offered to other Departments)	2	2	4	60	40	100	4
	$-A_{\mathbf{x}}$	To be obtained from other departments	-	-7	4	A			
*Note: C	Compulsory course	1	·	1	21	0	~		1
	-	VAC/MOOC COU	RSE**	22	/	1	-		
	моос	Offered by external agencies	E	/		60	40	100	At least 2
3.6	MSBST03VACxx	VAC (To be decided by Department as per requirements)	2	2	2	60	40	100	2
	*Note: The course shall CGPA.	be considered as additional cre	dits and	d shall	not be	consid	ered fo	br compi	itation of

	INTERSHIP/FIELD VISIT/ MINOR PROJECT/ INDUSTRIAL VISIT								
3.7	MSBST03DSC11	Any one of: internship, field visit, minor project or industrial visit.	2	-	-	60	40	100	2
	Tota	00000	19		1				23

L=Lecture, T/S=Tutorials/Seminar, P/I=Practical/Internship, CE =Continuous Evaluation, ESE = End Semester Evaluation

Sl No	POOL E: DISCIPLINE SPECIFIC ELECTIVES (DSE) (Practical)								
	MSBST03DSE05	Biostatistical Computing	2	2	6	6 60	40	100	3
3.3.1		Using R -II						100	5
3.3.2	MSBST03DSE06	Biostatistical Computing		2	6	60	40	100	3
		Using SAS -II	L	3500				100	
	POOL F : DISCIPLINE SPECIFIC ELECTIVES (DSE)								
			- 6	-		1			
3.4.1	MSBST03DSE07	Stochastic Process and Time	4	2	-	60	40	100	3
		Series Analysis							
3.4.2	MSBST03DSE08	Applied Multivariate	4	2	_	60	40	100	3
		Analysis							
3.4.3	MSBST03DSE09	Machine Learning	4	2	_	- 60	40	100	3
		Techniques for Biostatistics			1000				
3.4.4	MSBST03DSE10	Categorical Data Analysis	4	2	/- i	60	40	100	3
	- /_			1	2	$(\land $			
3.4.5	MSBST03DSE11	Operations Research	4	1	2.2	60	40	100	3
		Data Visualisation and	1	20	/	1		200	
3.4.6	MSBST03DSE12	analysis using Python	2	V	4	60	40	100	3
			1						

Sl No	POOL G: INTERDISCIPLINARY ELECTIVES (for other Departments)(IDC)								
3.5.1	MSBST03IDC01	Statistical Data Analysis using SPSS		2	6	60	40	100	3
3.5.2	MSBST03IDC02	Statistical Data Analysis using R		2	6	60	40	100	3

	DISCIPLINE SPECIFIC CORE COURSE						
Course Code &	MSBST03DSC09- DESIGN OF EXPERIMENTS AND QUALITY						
Title	CONTROL						
Programme	M.Sc. Biostatistics Semester III						
Course Objectives	 This course provides the students the ability to understand the design and conduct experiments, as well as to analyze and interpret data. After successful completion of this course, student will be able to: Apply ANOVA for one way and two-way classification, fixed effect models with equal and unequal number of observations percell, Random and Mixed effect models. Design and analyse incomplete block designs, understand the concepts of orthogonality, connectedness and balance. Identify the effects of different factors and their interactions and analyse factorial experiments. Understand basics of statistical quality control and various control charts. 						

Modules	Content	Module Outcome
Module I Basic concepts of design of experiments (15 Hours)	Basic terminology and definitions, Randomization, Replication and local control, Fixed, mixed and random effect models, Gauss Markov theorem, fundamental principles of design of experiments, Analysis of variance-one way and two ways.	 Understand the basic concepts of design of experiments. Differentiate between fixed, mixed, and random effect models. Explain the Gauss-Markov theorem. Perform analysis of variance for one-way and two-way experimental designs.

	Completely randomized design analysis, randomized block	• Design and analyze CRD, RBD, LSD.
Module II Randomized designs (15 Hours)	design-analysis, Latin square design-analysis, Graeco-Latin square designs, analysis of missing data. Analysis of covariance for RBD.	 Design and analyze experiments using Graeco-Latin square designs. Understand methods for analyzing and handling missing
Module III Incomplete block and factorial designs (15 Hours)	Incomplete block design- Balanced incomplete block design, construction of BIBD design, intra block analysis of BIBD, Factorialexperiments-2 ⁿ , concept of confounding.	 data. Design and analyze experiments using incomplete block designs. Perform intra block analyses for balanced incomplete block designs. Design and analyze factorial experiments with 2ⁿ levels. Identify and understand the presence of confounding in factorial experiments.
Module IV Introduction to statistical quality control (15 Hours)	Quality and quality assurance, Methods of quality assurance, statistical quality control Control charts, Basic ideas, designing of control charts for the number of non-conformities and fraction non-conformities, mean charts, Median charts, R- charts, and S-charts, ARL, Economic design of Shewarts control charts.	 Define and differentiate between quality and quality assurance Design and interpret mean charts, median charts, range (R)-charts, and standard deviation (S)-charts for process monitoring. Understand the economic implications of implementing Shewhart's control charts.
References	<i>Text Books</i> 1. Das, M.N. and Giri, N.S. (2	2002): Design and Analysis of

58 | Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	<i>Experiments, 2nd Edition</i> , New Age International (P) Ltd., New
	Delhi.
	2. Joshi, D.D. (1987): Linear Estimation and Design of Experiments.
	Wiley Eastern Ltd., New Delhi.
	3. Montgomery, D.C. (2001): Design and Analysis of Experiments. 5th
	Edition, John Wiley & Sons- New York.
-	4. Montgomery, R.C. (1985). Introduction to Statistical Quality
	Control, Fourth edition, Wiley.
	Reference books
	 Gupta, S. C and Kapoor, V. K.(2010). Fundamentals of Applied Statistics. Sulthan Chand & Co,NewDelhi.
	2. Amitava Mitra - Fundamentals of Quality Control and Improvement – Pearson Education Asia 2001.
	3. The ISO 9000 book, Second Edition, Rabbit, J T and Bergle, PA Quality resources.
	After successful completion of this course, student will be able to:
	1. Demonstrate a mastery of fundamental principles guiding the
	design of experiments.
	2. Able to design and analyze experiments using Latin square and
~	Graeco-Latin square designs.
Course	3. Demonstrate expertise in designing and analyzing factorial
Outcomes	experiments with 2 ⁿ levels, and will be able to identify and control
/	confounding factors within factorial designs to ensure the accuracy
-1/	of results.
	4. Identify different types of control charts and their applications in
	monitoring processes. Optimize the design of control charts to
	minimize costs while ensuring effective quality control.
	A DNING STDATECIES

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage			
End Semester	60			
Evaluation(ESE)	-			
Continuous Evaluation				
Tests	16			
Assignment	08			
Seminar	16			
Total	40			

Sample Questions to Test Outcomes:

- 1. Explain Gauss-Markov theorem.
- 2. Explain Cochran's theorem.
- 3. Describe the three fundamental principles of experimentation and explain the importance of these principles with respect to designing statistical experiments.
- 4. Briefly explain contrasts and orthogonal contrasts.
- 5. Explain in detail the analysis of two-way classified data with one observation per cell.
- 6. Explain the efficiency of RBD relating to CRD.
- 7. Distinguish between ANOVA and ANCOVA
- 8. What do you understand by "Analysis of Covariance"? Illustrate with suitable example.
- 9. Explain Greaco Latin Square Design and orthogonal latin square design.
- 10. In a LSD a single observation is missing. How will you estimate the missing value and carry out the analysis of the design?

Course Code & Title	MSBST03DSC10- ANALYSIS OF CLINICAL TRIALS	
Programme	M.Sc. Biostatistics	Semester III

DISCIPLINE SPECIFIC CORE COURSE

	The objective of this course is to study more advanced topics in design and				
Course	analysis of clinical trials. After successful completion of this course, student				
Objectives	will be able to:				
Objectives	1. Understand Basics of Clinical Trails				
	2. Understand design of clinical trials				
	3. Understand Sample size determination in clinical trials				
	4. Understand the concept of meta analysis in clinical trials.				

Modules	Content	Module Outcome
Module I Introduction to clinical trails (15 Hours)	Introduction to clinical trails, the need and ethics of clinical trials, bias and random error in clinical studies, Protocols, conduct of clinical trials, over view of Phase I-IV trials, Data management-data definitions, standard operating procedure, informed consent form, case report forms, database design, data collection systems for good clinical practice.	 Understand the need and ethics of clinical trial. Describe different types of forms used in clinical trial. Understand about different types of errors that occur during the conduct of clinical trial. Have a clear idea on clinical practice and clinical practice and management.
Module II Design of clinical trials (15 Hours)	Design of clinical trials- Different phases, Comparative and controlled trials, Random allocation, Randomization, response adaptive methods and restricted randomization. Methods of Blinding, Parallel group designs, Crossover designs, Symmetric designs, Adaptive designs, Group sequential designs, Zelen's designs, design of bioequivalence trials. Outcome measures.	 Understand about different types of randomization procedures used in clinical trials. Have an idea on different types of bliniding. Describe different types of designs used in clinical trials.
Module III		• Determine the sample

61 | Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

Statistical analysis in clinical trails (15 Hours)	 Sample size determination in one and two sample cases, comparative trials, activity studies, testing and other purposes, unequal sample sizes and case of ANOVA. Surrogate endpoints-selection and design of trials with surrogate, analysis of surrogate end point data. Reporting and analysis-Interpretation of result, multi-center trials. Mate analysis in alipical trials concert and
Module IV Meta analysis in clinical trials (15 Hours)	 Meta analysis in clinical trials-concept and goals, fixed and random effect approaches. Bioassay: Direct and indirect assays, Quantal and quantitative assays, Parallel line and slope ratio assays, Design of bioassays. Understand different types of bioassay and their analysis. Describe meta-analysis.
References	 Text Books Chen, D.G. and Peace, K.E. (2011). Clinical Trial Data Analysis Using R. Chapman & Hall Friedman, L. M., Furburg, C. D. Demets, L. (1998): Fundamentals of Clinical Trials, Springer Verlag. Kulinskaya E, Morgeathaler S, Staudte R G(2008). Meta analysis, Wiley. Reference Books Das, M. N. and Giri(2008). Design of Experiments, New Age, India Jennison and B.W. Turnbull (1999): Group Sequential Methods with Applications to Clinical Trials, CRC Press.
Course	After successful completion of this course, student will be able to:
Outcomes	 Understand Basics of Clinical Trials. Understand design of clinical trials. Understand Sample size determination in clinical trials. Understand the concept of meta-analysis in clinical trials.

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester	60	
Evaluation(ESE)		
Continuous Eva	aluation	
Tests	16	
Assignment	08	
Seminar	16	
Total	40	

Sample Questions to Test Outcomes:

- 1. What is a clinical trial?
- 2. Differentiate between a prospective an retrospective study.
- 3. Define response adaptive randomization.
- 4. Distinguish between blinding and masking
- 5. Define sample size calculation for independent continuous response variables.
- 6. Differentiate between analytical dilution assay and comparative dilution assay.
- 7. Distinguish between adaptive and non-adaptive randomization.
- 8. Explain about blocked randomization and stratified randomization.
- 9. Explain in detail about blindness in a clinical trial.
- 10. Describe the design of adaptive trials and group sequential design.

POOL E: DISCIPLINE SPECIFIC ELECTIVE COURSE (Practical)

Course Code &	MSBST03DSE05- BIOSTATISTICAL COMPUTING USING R – II	
Title	(Practical)	
Programme	M.Sc. Biostatistics Semester III	

	• To introduce some advanced statistical computing techniques in
Course	applied statistics to extract information and visualization thereby
Objectives	enabling them to perform data analysis effectively and efficiently
	in R programming.
	• Illustrate different statistical techniques based on all the elective
~	course in third semester.
	Yes I have the

Modules	Content	Module Outcome
	Statistical Computing III is a practical course. The practical is based on all the elective courses in the third semester.	Describe different statistical technique to solve problems coming under all the elective courses in third semester.
Course	After successful completion of this course,	student will be able to:
Outcomes	3. Equipped with different theoretical methods in biostatistics to	
	achieve the objectives.	
	4. Enhanced with the basic concepts of biostatistical theories besides	
	developing their ability to handle real world problems with large	
	scale data.	

• Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation	60	
Continuous Evaluation		
Practical Tests	32	
Record	8	
Total	40	

POOL E: DISCIPLINE SPECIFIC ELECTIVE COURSE (Practical)

Course Code & Title	MSBST03DSE06-BIOSTATISTICAL COMPUTING USING SAS- II (PRACTICAL)	
Programme	M.Sc. Biostatistics Semester III	
Course	• To introduce some advanced biostatistical computing techniques	
Objectives	in applied statistics to extract information and visualization	
	thereby enabling them to perform data analysis effectively and	
	efficiently in SAS programming.	
	• Illustrate different biostatistical techniques based on all the	
	elective course in third semester.	

Modules	Content	Module Outcome
	Biostatistical Computing III is a	• Describe different
	practical course. The practical is	statistical technique to
	based on all the elective courses in	solve problems coming
	the third semester.	under all the elective
		courses in third semester.
Course	After successful completion of this course, student will be able to:	
Outcomes	1.Equipped with different theoretical methods in biostatistics to achieve	
5	the objectives.	5
- A.	2. Enhanced with the basic concepts of biost	atistical theories besides
	developing their ability to handle real worl	d problems with large scale
<-1	data.	5 × >
1	UR UNIVER	

TEACHING LEARNING STRATEGIES

- Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION
 - Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

65

Components	Weightage
End Semester Evaluation	60
Continuous Eva	luation
Practical Tests	32
Record	8
Total	40

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE

Course Code &	MSBST03DSE07-STOCHASTIC PROCESS AND TIME SERIES	
Title	ANALYSIS	
Programme	M.Sc. Biostatistics Semester III	
	The course will help the Students to develop a comprehensive	
Course	understanding of stochastic processes, particularly focusing on Markov	
Objectives	chains, including their definition, classification, and real-world examples.	
	It also help the student to delve in to basic concepts of time series analysis	
	and time series modelling. Also Students will develop skills in time series	
	analysis, including autocorrelation, stationarity, and regression modeling.	

Modules	Content	Module Outcome
Module I: Introduction to stochastic process (16 Hours)	Introduction to stochastic process, Markov Chains: Definition, Examples and classification, Discrete renewal equation and basic limit theorem, Absorption probabilities, Criteria for recurrence.	 Define Markov chains and classify them based on various criteria. Understand the discrete renewal equation and its significance in the context of Markov chains. Calculate absorption probabilities for absorbing

λ

ñ

Module II: Continuous time Markov chains (14 Hours)	Continuous time Markov chains, Examples, General pure birth process, Poisson process, Birth and death process, Finite state continuous time Markov chains, Applications to queuing models.	 Markov chains. Understand the implications of recurrence on the long-term behavior of Markov chains. Provide examples of continuous-time Markov chains in various domains. Understand the concept of pure birth processes and Poisson processes. Analyze birth and death processes in continuous time Markov chains.
		• Analyze finite-state continuous-time Markov chains using mathematical tools.
Module III: Introduction to time series analysis (16 Hours)	Characteristics of time series: Time series as a discrete parameter stochastic process, Autocorrelation (ACF) and cross correlations, Stationary time series, Estimation of autocorrelations. Classical regression in time series context, exploratory data analysis, smoothing methods for time series. Wold representation of linear stationary processes.	 Understand time series as a discrete parameter stochastic process. Calculate autocorrelation functions (ACF) and cross-correlations for time series data. Define stationary time series and understand its importance in time series analysis. Estimate autocorrelations and conduct classical regression analysis for time series data.
Module IV: Linear time	Linear time series models : Autoregressive (AR), Moving	• Understand the concepts and properties of autoregressive (AR)
series model (14 Hours)	Average (MA), Autoregressive Moving Average (ARMA) and	and moving average (MA) models.

| Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	AutoregressiveIntegratedMoving Average (ARIMA) models.• Understand the structure and parameters of autoregressive moving average (ARMA) models.seasonal ARIMA models, Residual analysis and diagnostic checking.• Apply ARIMA models to analyze and forecast time series data with trend and seasonality.• Conduct residual analysis and diagnostic checking to assess the adequacy of time series models.		
	Text Books		
	1. Karlin.S. and Taylor, H.M. (1975) A First Course in Stochastic		
	 Processes, second edition, Academic Press. 2. Bhat, B.R. (2002) Stochastic Processes, second edition, New Age Publication. 3. Shumway, R. H and Stoffer, D. S. (2006). Time series Analysis and its Applications. Springer. 4. Box, G. E. P. Jenkins, G. M. and Reinsel, G. C. (1994). Time Series 		
	Analysis: Forecasting and Control, Pearson Education.		
References	Reference Books		
	1. Feller, W. (1965, 1968), An Introduction to Probability Theory and		
N	its Applications, Volume I and II, Wiley Eastern.		
A	2. Bhat, U.N. (1984) Elements of Applied Stochastic Processes, John		
	Wiley.		
-1/	3. Cinlar, E. (1975) Introduction to Stochastic Processes, Prentice Hall.		
1	4. Brockwell, P.J and Davis R.A. (2006) Time Series: Theory and		
	Methods, 2ndedn. Springer-Verlag		
	5. Chatfield, C. (2004) The Analysis of Time Series - An Introduction,		
	Sixth edition, Chapman and Hall.		
	6. Anderson, T.W (1971) Statistical Analysis of Time Series, Wiley.		
Course	After successful completion of this course, student will be able to:		
Outcomes	1. Understand the implications of recurrence on the long-term behavior of Markov chains.		

2. Determine key characteristics and parameters of birth and death	
processes.	
3. Apply AR and MA models to analyze and forecast time series data.	
4. Apply ARIMA models to analyze and forecast time series data with trend	
and seasonality.	

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation(ESE)	60	
Continuous Ev	aluation	
Tests	16	
Assignment	08	
Seminar	16	
Total	40	

Sample Questions to Test Outcomes:

- 1. Define Markov chain.
- 2. Prove that a Markov chain is completely determined by its initial distribution and one step TPM.
- 3. Define periodic and aperiodic Markov chains.
- 4. Consider Markov chain whose TPM is

(0	$\frac{1}{3}$	$\frac{2}{3}$
$\frac{1}{2}$	0	$\frac{1}{2}$
$\frac{1}{2}$	$\frac{1}{2}$	0)

69

(i)Is the chain is irreducible.

(ii)Is the chain is ergodic? Explain.

(iii)Find the stationary distribution of the chain.

- 5. Show that in an irreducible Markov chain all the states are of same type.
- 6. Show that probability of extinction of Galton Watson branching process is the smallest positive root of the equation s = P(s), where P(s) is the PGF of the offspring distribution.
- Suppose that customers arrive at a bank according to a Poisson process with mean rate of 3 per minute. Find the probability that during a time interval of 2 minutes (i)exactly 4 customers arrive (ii) more than 4 customers arrive and (iii) at least one customer arrive.
- 8. Describe the relation between Poisson process and binomial distribution.
- 9. Explain renewal process. Give examples
- 10. Describe the stationary behavior of a birth and death processes and hence obtain the system size distribution of M/M/1 and M/M/c queueing models.

Course Code &	MSBST03DSE08-APPLIED MULTIVARIATE ANALYSIS	
Title		
Programme	M.Sc. Biostatistics	Semester III

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE

	• Understand the fundamentals of multivariate data analysis and the	
	notion of multivariate distributions.	
	• Demonstrate proficiency in analyzing multivariate data using the	
	multivariate normal distribution, including understanding marginal	
	and conditional distributions.	
	• Master the concept of characteristic functions and their application in	
Course	multivariate data analysis.	
Objectives	• Develop skills in estimating the mean vector and covariance matrix of	
	multivariate datasets.	
	• Interpret canonical variates and canonical correlations, both in	
	population and sample contexts, as part of Canonical Correlation	
	Analysis (CCA).	
	• Apply orthogonal factor models in Factor Analysis, including	
	methods of estimation, factor rotation, and computation of factor	
	scores.	
	• Utilize various similarity measures and hierarchical and non-	
	hierarchical clustering methods in Cluster Analysis.	

Modules	Content	Module Outcome
Module I Multivariate normal distribution (15 Hours)	Multivariate data, preliminary analysis, notion of multivariate distributions, multivariate normal distribution, marginal and conditional distributions, characteristic function, estimation of mean vector and covariance matrix.	 Able to identify and describe the notion of multivariate distributions. Learn about marginal and conditional distributions in the context of multivariate data. Derive characteristic functions and their importance in the analysis of multivariate data.
Module II Principal component and canonical correlation	Principal components Analysis: - population principal components, summarizing sample variation by principal components, graphing the principal components; Canonical correlation analysis: - canonical variates	 Students will demonstrate a comprehensive understanding of PCA. Summarize sample variation effectively using

analysis	and canonical correlations, interpreting	principal components.
(15 Hours)	the population canonical variables, the sample canonical variates and sample canonical correlations.	• Master the principles of Canonical Correlation Analysis,
Module III Factor and cluster analysis (15 Hours)	Factor analysis: - orthogonal factor model; methods of estimation, factor rotation, factor scores; Cluster analysis: - similarity measures, hierarchical clustering methods, non-hierarchical clustering methods.	 Demonstrate a comprehensive understanding of factor analysis including the orthogonal factor model, methods of estimation. Develop proficiency in applying factor analysis techniques, including estimating factor loadings, conducting factor rotation to simplify interpretation. Demonstrate the ability to apply cluster analysis techniques
		to real-world datasets.
Module IV: MANOVA and Multidimension al scaling	Comparison of several multivariate	• Demonstrate proficiency in comparing several multivariate population means using one-way Multivariate Analysis of Variance
(15 Hours)	population means (one-way MANOVA), simultaneous confidence intervals for treatment effects, two-way multivariate analysis of variance; Distance methods: - multidimensional scaling, correspondence analysis.	 (MANOVA). Construct simultaneous confidence intervals for treatment effects in multivariate data analysis settings. Proficiency in distancebased multivariate analysis methods.

References	Text Books				
	1. Johnson, R.A. and Wichern, D.W. (2007) Applied Multivariate Statistical				
	Analysis, PHI Learning Private Ltd, New Delhi, Sixth edition.				
	 Rencher, A.C. (1995) Methods of Multivariate Analysis, John Wiley. 				
	 Dillon, W.R. and Goldstein, M (1984) Multivariate Analysis, John 				
-	Wiley.				
	Reference Books				
	1. Anderson, T.W. (1984) An Introduction to Multivariate Statistical				
	Analysis, John Wiley.				
	2. Seber G.A.F. (1983) Multivariate Observations, Wiley.				
	3. Tabachnick, B.G. and Fidell, L.S. (2018) Using multivariate statistics,				
	Sixth edition, Pearson India Education Services Pvt Ltd, India.				
	After successful completion of this course, student will be able to:				
	1. Demonstrate a comprehensive understanding of various multivariate data				
	analysis techniques.				
	2. Develop proficiency in dimensionality reduction techniques such as Principal				
Course	Components Analysis (PCA) and Factor Analysis.				
Outcomes	3. Acquire advanced multivariate analysis skills, including conducting				
	comparisons of several multivariate population means using one-way				
	MANOVA, simultaneous confidence interval construction for treatment effects.				
~	4. Master the analysis of multivariate relationships using techniques such as				
Α.	Canonical Correlation Analysis (CCA), cluster analysis, and distance methods.				
TEACHINCI					

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester	60	
Evaluation(ESE)		
Continuous Evaluation		

000 WW 104	all of the
Total	40
Seminar	16
Assignment	08
Tests	16

Sample Questions to Test Outcomes:

- 1. Define a singular multivariate normal distribution. Give an example of a random vector following singular multivariate normal distribution.
- 2. If $X \sim Np(\mu, \Sigma)$ and if Σ is a diagonal matrix then show that the components of X are independently normally distributed and conversely.

3. Give an example to show that the marginal distributions are normals does not imply that the joint distribution follows a multivariate normal distribution.

4. Define partial correlation. Explain how do you evaluate the partial correlation coefficients from a non-singular covariance matrix.

- 5. Define multiple correlation. Show that $0 \le \rho 1.23...p \le 1$.
- 6. Derive the distribution of sample mean of a sample of size n from Np(μ , Σ).
- 7. Find the MLE of the correlation matrix based on a random sample of size n from $Np(\mu, \Sigma), \Sigma > O$, when μ is known.
- 8. Define Wishart distribution and derive its characteristic function.
- 9. Derive the characteristic function of a matrix-variate gamma distribution.

10. Derive the characteristic function of a Wishart matrix and show that Wishart distribution is a matrix variate generalization of χ^2 distribution.

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE

Course Code &	MSBST03DSE09 - MACHINE LEARNING TECHNIQUES FOR		
Title	BIOSTATISTICS		
Programme	M.Sc. Biostatistics	Semester	III

	 To classify variables and articulate their roles within statistical modeling, distinguishing between categorical, numerical, and ordinal variables, and understanding their implications for analysis. Demonstrate competency in applying least squares regression and the interval of the end of
Course Objectives	 nearest neighbors algorithms for data analysis. Master supervised learning techniques and function approximation methods, utilizing them to model relationships between input and output variables effectively. Demonstrate proficiency in utilizing roughness penalty methods and Bayesian approaches to estimate model parameters, understanding their roles in controlling model complexity and improving generalization. Proficient in employing kernel methods and local regression techniques for modeling non-linear relationships in data.

Modules	Content	Module Outcome	
Module I Introduction and overview of supervised learning (15 Hours)	Supervised Learning and Function Approximation, A Statistical Model for the Joint Distribution of input and output vectors, Function Approximation, Structured Regression Models, Linear Methods for Regression: Least squares, Subset selection, Shrinkage Methods, Methods using derived input directions, Multiple outcome shrinkage and selection, Lasso and related path algorithms.	 Explore structured regression models and classes of restricted estimators, including roughness penalty and Bayesian methods. Understand the practical considerations in automatic selection of smoothing parameters and nonparametric logistic regression. 	
Module II: Linear methods for	Linear methods for classification using linear regression of an indicator matrix, linear discriminant analysis, logistic regression and separating hyperplanes. Basis expansions and	• Explore linear discriminant analysis (LDA) and its role in	

classification (15 Hours)	regularizations: Piecewise polynomials and splines, Automatic Selection of the Smoothing Parameters, Nonparametric Logistic Regression, Multidimensional Splines.	 multi-class classification problems. Implement piecewise polynomials and splines for capturing complex
		functionalformsinregressionandclassification tasks.• Explore structured localregressionmodelsinmultidimensionalspacesandtheiradvantagesin
Module III: Kernal smoothing (15 Hours)	One-Dimensional Kernel Smoothers, Selecting the band width of the Kernel, Structured Local Regression Models in R ^p , Local Likelihood and Other Models, Kernel Density Estimation and Classification: Kernel Density Estimation, Kernel Density classification and the Naïve Bayes classifier. Mixture Models for Density Estimation and Classification.	 and their davantages in capturing complex data patterns. Implement kernel density classification methods for classifying data points based on their estimated densities. Understand the mathematical properties of RBFs and kernels and their role in non-linear transformations of input data.
Module IV: Model assessment, inference and averaging (15 Hours)	Bias, Variance and Model Complexity, The Bias–Variance Decomposition, Optimism of the Training Error Rate, Estimates of In- Sample Prediction Error, The Bayesian Approach and BIC, Minimum Description Length, Cross-Validation, Bootstrap Methods, Conditional or Expected Test Error, introducing Model Inference and averaging: Local regression in IR, The EM Algorithm,	

	MCMC for Sampling from the Posterior,	Criterion (BIC) and		
	Bagging, Model Averaging and Stacking,	minimum description		
	Stochastic Search: Bumping.	length for model selection.		
	Text Books			
	1. Hastie, T., Tshibirai, R. and Friedman, J. (201	7) The Elements of Statistical		
	Learning : Data Mining, Inference and Prediction, 2nd edition. Springer, N			
	York.			
References	2. James, G., Witten, D., Hastie, T. and Tibshira	ni, R.(2013) An Introduction to		
References	Statistical Learning with Applications in R. Springer, New York.			
	Reference Books			
	1. James, G., Witten, D., Tibshirani, R. and Hastie, T. Neural Networks and Deep			
	Learning: A Textbook.			
	2. Introduction to Machine Learning The Wikipedia Guide.			
	After successful completion of this course, student will be able to:			
	1. Gain proficiency in applying least squares regression, nearest neighbors, and			
	local methods for high-dimensional data analysis.			
Course	2. Master linear methods for regression and classification, including subset			
	selection, shrinkage methods, and linear discriminant analysis.			
Outcomes	3. Learn techniques for estimating in-sample prediction error, including cross-			
	validation and bootstrap methods.			
	4. Explore advanced model inference methods, including maximum likelihood			
	estimation, Bayesian inference, and the EM algorithm.			
TFACHINGI	EARNING STRATEGIES	1		

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

-

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester	60	
Evaluation(ESE)		
Continuous Evaluation		

000 000100	
Total	40
Seminar	16
Assignment	08
Tests	16

Sample Questions to Test Outcomes:

- 1. How do least squares and nearest neighbors differ in their approach to supervised learning, and what are the advantages and limitations of each method in terms of handling high-dimensional data?
- 2. Can you explain the concept of the bias-variance tradeoff in the context of model selection? How do different methods such as Lasso, subset selection, and shrinkage methods address this tradeoff, and under what conditions would one method be preferred over another?
- 3. What are the key principles behind kernel methods and local regression in function approximation? How do these methods handle non-linear relationships between variables, and what are some practical considerations when choosing between different kernel functions or regression approaches?
- 4. How do linear methods for classification, such as logistic regression and linear discriminant analysis, differ in their approach to separating classes? Discuss the advantages and limitations of each method in terms of handling non-linearly separable data and the assumptions underlying their models.
- 5. What role does feature extraction play in filtering and smoothing techniques, particularly in the context of multidimensional splines and wavelet smoothing?
- 6. What are the key principles behind one-dimensional kernel smoothers, and how do they differ from other smoothing techniques such as splines or local regression?
- 7. How do structured local regression models in multidimensional spaces (Rp) extend the concepts of one-dimensional kernel smoothers?

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE				
Course Code &	MSBST03DSE10-CATEGORICAL DATA ANALYSIS			
Title	Mobs 100 DSE 10-CATEGORICAL DATA ANALISIS			
Programme	M.Sc. Biostatistics	Semester	III	
	• Demonstrate a comprehensive understanding of categorical dat			
	and their measures, including approp	priate techniqu	ues for analysis.	
	• Gain proficiency in conducting infer	ence for conti	ingency tables,	
	applying appropriate statistical tests and interpreting results			
Course	effectively.			
Objectives	• Develop a deep understanding of generalized linear models,			
	particularly focusing on binary and count data.			
	• Gain proficiency in handling longitudinal data, understanding it			
	characteristics.			
	• Gain practical experience in fitting general linear mixed effect			
	and interpreting			
	results.			

Modules	Content	Module Outcome
		• Demonstrate a thorough
Module I		understanding of categorical
Categorical	Categorical data and their measures,	data and their measures.
data and their	Inference for contingency tables,	• Proficient in conducting
measures	Generalized linear models for binary	inference for contingency
(15 Hours)	and count data. Estimation, Inference	tables.
	and fitting of model.	• Experience in applying
	UNING	generalized linear models to
		binary and count data.
Module II	Logistic, logit and log linear models	• Understanding Logistic, Logit,
Logit and	with categorical predictors, Logit	and Log-linear Models.
logistic models	models with multi responses-	• Proficient in specifying and
(15 Hours)	Nominal and ordinal responses.	estimating logistic, logit, and

Module III: Longitudinal data and their characteristics (15 Hours)	Longitudinal data and their characteristics, The general linear model for longitudinal data-ML and REML estimation, EM algorithm, General linear mixed effect model. Inference for the random effects. BLUPs, Empirical Bayes, Shrinkage model building and diagnostics, Generalized additive mixed model.	 log-linear models with categorical predictors. Apply logit models to datasets with multi-responses, encompassing both nominal and ordinal responses. Develop a comprehensive understanding of longitudinal data and their unique characteristics. Proficient in applying the general linear model to longitudinal data. Fitting general linear mixed effect models to longitudinal data.
Module IV: Generalised linear model for longitudinal data (15 Hours)	Generalised linear model for longitudinal data, Random effect model, Transition models, Poisson and logistic regression models, Analysis and test. Classification of missing data mechanism- intermittent missing values and dropouts, weighted estimating equations, Modeling the drop out process.	 Explain the concepts and principles behind generalized linear models (GLMs) and their application to longitudinal data analysis. Develop a thorough understanding of random effect models and their role in analyzing longitudinal data with correlated observations. Understand the importance of model validation and diagnostic checks in longitudinal data analysis, and be able to apply these techniques effectively.

80 | Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	Text Books		
	1. Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley &		
	Sons.		
	2. Diggle, P.J, Heagerty, P., Liang, K., Y & Zeger, S., I (2003), Analysis of		
References	longitudinal data, Oxford university press.		
References	3. Lindsey, J.,K.(1993) Models for repeated measurements, Oxford		
	Reference Books		
	1. Weiss, R., E.(2005), Modelling longitudinal data, Springer, New York.		
	2. Little, R. J. A. & Rubin, D., B(2002), Statistical analysis with missing		
	data, Wiley.		
Course	After successful completion of this course, student will be able to:		
Outcomes	1. Conduct analysis of longitudinal data.		
	2. Apply statistical techniques to model longitudinal data and make		
	predictions.		
	3. Understand analysis of longitudinal data with missing data.		
	4. Understand analysis of longitudinal data with time-dependent covariates.		

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

de-

Components	Weightage
End Semester Evaluation(ESE)	60
Continuous	Evaluation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

- 1. What are categorical data, and what measures are commonly used to summarize and analyze them?
- 2. Discuss common statistical tests used for assessing the association or independence between categorical variables in contingency tables.
- 3. Provide examples of binary and count data scenarios where GLMs are appropriate and discuss the interpretation of model coefficients in these contexts.
- 4. Describe the process of model estimation and interpretation in logistic regression models.
- 5. Discuss strategies for handling issues such as missing data, multicollinearity, and model validation to ensure the reliability and generalizability of the model results.
- 6. Compare and contrast maximum likelihood (ML) and restricted maximum likelihood (REML) estimation techniques in the context of longitudinal data analysis. Provide examples to illustrate your points.
- 7. Explain the concept of a general linear mixed effect model (GLMM) and its relevance in analyzing longitudinal data.
- 8. Define the Generalized Additive Mixed Model (GAMM) and discuss its advantages in modeling longitudinal data with non-linear relationships.
- 9. Explain the concept of the Generalized Linear Model (GLM) for longitudinal data analysis.
- 10. Define transition models and discuss their significance in longitudinal data analysis.

Course Code & Title	MSBST03DSE11-OPERATIONS RESEARCH		
Programme	M.Sc. Biostatistics Semester III		
Course Objectives	 Understand the fundamental concepts of linear programming problems (LPP) and their applications in real-world optimization scenarios. Develop proficiency in graphical solution techniques for visualizing and analyzing LPPs, including identifying feasible regions and optimal solutions. 		

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE

•	Demonstrate the ability to determine feasible, basic feasible, and
	optimum basic feasible solutions to LPPs, both graphically and
	analytically.
•	Gain insight into the theoretical foundations of linear
	programming, including the analytical results and theoretical
1-	development of the simplex method.
	Master advanced solution techniques such as the use of artificial
1	variables, the Big-M method, and the two-phase simplex method
	to solve complex LPPs.
•	Explore practical optimization problems such as transportation
	and assignment problems, and learn to apply appropriate solution
	methods to address them effectively.

Modules	Content	Module Outcome		
Module I Introduction to linear programming problem (15 Hours)	Introduction to linear programming problem (LPP),graphical solution, feasible, basic feasible, and optimum basic feasible solution to an LPP. Analytical results in general LPP, theoretical development of simplex method.	 Define linear programming problems and their significance in optimization. Explain the concept of feasible solutions and their graphical representation. Identify basic feasible solutions and optimal basic feasible solutions in LPPs. 		
Module II Simplex methods (15 Hours)	Artificial variables, Big-M method, two phase simplex method Duality, duality theorems, dual simplex methods.	 Derive analytical results for general linear programming problems. Understand the theoretical development of the simplex method for solving LPPs. Apply artificial variables, the Big-M method, and the two-phase simplex method to handle 		

	special cases in LPPs.		
Module III Transportation and integer programming (15 Hours)	 Explore the concept of duality in linear programming and understand the duality theorems. Discuss the application of dual simplex methods in solving technique. Network analysis, Critical path analysis. Analyze transportation and assignment problems and apply appropriate solution techniques. 		
Module IV Game theory and applications (15 Hours)	 Game theory, pure and mixed strategies, conversion of two-person zero gain to a linear programming problem. Solution to game through algebraic, graphical and linear programming method. Examine integer programming and its solution methods. Explore network analysis techniques such as Critical Path Method (CPM) and Program Evaluation and Review Technique (PERT). Introduce game theory concepts, including pure and mixed strategies. 		
References	strategies. Text Books 1. K.V. Mital and Mohan, C (1996). Optimization Methods in Operations Research and SystemsAnalysis,3 rd Edition, New Age International(Pvt.)Ltd. 2. Kanti Swarup, Gupta, P. K.and John, M. M. (1985): Operations Research., Sultan Chand & Sons. Reference Books 1. Hadley, G.(1964).Linear Programming, Oxford& IBH Publishing Co, New Delhi. 2. Taha.H.A.(1982): Operation Research, An Instruction, Macmillan. 3. HillerF.S.AndLieberman,G.J.(1995).IntroductiontoOperationsResearc		
Course	h,McGrawHill After successful completion of this course, student will be able to:		

Outcomes	1.	Identify and develop operational research models from the
		verbal description of the real system.
	2.	Understand the mathematical tools that are needed to
		solve optimization problems.
	3.	Understand various methods in Integer programming and
	1	Game theory.

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation(ESE)	60	
Continuous Evaluation		
Tests	16	
Assignment	08	
Seminar/Viva	16	

Sample Questions to Test Outcomes:

1. Define Linear Programming Problem (LPP) and discuss its significance in optimization. What are the key components of an LPP, and how is it formulated?

2. Explain the graphical solution method for solving LPPs. How is the feasible region identified, and how are optimal solutions determined graphically?

3. Define feasible solutions, basic feasible solutions, and optimum basic feasible solutions to an LPP. What criteria are used to identify these solutions?

4. Discuss the theoretical development of the simplex method for solving LPPs analytically. How does the simplex method iteratively move from one basic feasible solution to another to find the optimal solution? 5. Explain the concept of artificial variables and the Big-M method in the context of solving LPPs. How are artificial variables used to convert an LPP into a form suitable for the simplex method?

6. Describe the two-phase simplex method for solving LPPs. What are the two phases, and how does this method handle special cases such as degeneracy?

7. Discuss duality in linear programming, including duality theorems and the dual simplex method. What is the relationship between the primal and dual problems, and how is duality used in optimization?

8. Define the transportation problem and the assignment problem. How are these types of problems formulated as linear programming problems, and what are their applications?

Course Code &	MSBST03DSE12- DATA VISUALIZATION AND ANALYSIS		
Title	USING PYTHON		
Programme	M.Sc. Biostatistics Semester III		
Course	• Gain proficiency in data acquisition and manipulation using Python		
Objectives	libraries.		
	• Understand and implement different data visualization techniques for		
	comprehensive data analysis.		
	• Learn the regression model building framework in Python, from		
	problem definition to model validation.		
5	• Develop skills in multiple linear regression including handling		
A.	categorical variables and diagnosing model issues with Python.		

POOL F: DISCIPLINE SPECIFIC ELECTIVE COURSE

Modules	Content	Module Outcome	
Module I Introduction to PYTHON (15 Hours)	Introduction to PYTHON, Data acquisition processes, extraction, cleaning, annotation, integration, reduction, and transformation. Basic charts, multivariate visualization, pixel- oriented, geometric projection, icon- based, and hierarchical visualization.	 Ability to effectively extract, clean, annotate, integrate, reduce, and transform data using Python. Understanding of data preprocessing techniques to prepare datasets for analysis, including data normalization, 	

Module II Data visualization tools (15 Hours)	Data visualization tools, rank analysis, trend analysis, multivariate analysis, distribution analysis, correlation analysis, and geographical analysis.	 missing value imputation, and feature engineering. Proficiency in utilizing advanced visualization methods such as pixeloriented, geometric projection, icon-based, and hierarchical visualization. Ability to communicate insights and findings derived from data visualization effectively.
Module III Regression model building framework (15 Hours)	Regression model building framework, covering problem definition, data pre- processing, model building, diagnostics, and validation. Simple linear regression, coefficients of determination, significance tests, residual analysis, and confidence/prediction intervals.	 Understanding of best practices in data visualization design. Ability to leverage interactive visualization tools and dashboards to engage stakeholders and facilitate exploratory data analysis and decision-making processes.
Module IV Multiple linear regression (15 Hours)	Multiple linear regression, coefficients of multiple determination, interpretation of regression coefficients, categorical variables, diagnosing issues, heteroscedasticity and multicollinearity, outliers, autoregression, and variable transformation for robust regression model building.	 Understanding of the regression model building framework and evaluation using Python. Capability to validate regression models using diagnostic techniques, including confidence and prediction intervals, to assess model accuracy and reliability for predictive analysis.

	Text Books
	1. AndyKirk, Data Visualization a Handbook for Data Driven Design,
	Sage Publications, 2016
	2. Philipp K.Janert, Gnuplot in Action, Understanding Data with Graphs,
	Manning Publications,2010.
	Reference Books
	1. Alberto Cordoba, "Understanding the Predictive Analytics Lifecycle",
	Wiley,2014.
	2. Eric Siegel, Thomas H. Davenport, "Predictive Analytics: The Power to
References	Predict Who Will Click, Buy, Lie, or Die", Wiley, 2013.
	3. James R Evans, "Business Analytics-Methods, Models and Decisions",
	Pearson 2013.
	4. R. N. Prasad, Seema Acharya, "Fundamentals of Business Analytics",
	Wiley,2015.
	5. Perkovie, L. (2011). Introduction to computing using python: An
	Application development focus. Wiley Publishing.
	6. McKinney, W. (2012). Python for data analysis: Data wrangling with
	Pandas, NumPy, and IPython. "O Reilly Media, Inc."
	After successful completion of this course, student will be able to:
	1. Apply Python libraries for data acquisition to extract, clean, integrate,
5	and transform datasets efficiently.
- A	2. Utilize Python libraries for various visualization methods to interpret and
Course	communicate complex data effectively.
Outcomes	3. Construct regression models using Python libraries, including appropriate
Outcomes	pre-processing techniques and diagnostic tools.
	4. Analyze simple linear regression results, including coefficients of
	determination and significance tests, using Python.
	5. Implement multiple linear regression models in Python, addressing issues
	like multicollinearity and heteroscedasticity for robust predictions.
TEACHINCLI	EARNING STRATEGIES

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation(ESE)	60
Continu	ous Evaluation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

- 1. How would you describe the process of data acquisition and what are its key components?
- 2. Can you explain the difference between data cleaning and data transformation?
- 3. What are some common techniques used for reducing the dimensionality of datasets during data preprocessing?
- 4. Describe a situation where you might encounter missing data during the data acquisition process and how would you handle it?
- 5. How do you decide which visualization technique to use for a given dataset and analysis objective?
- 6. Explain the purpose of rank analysis tools in data visualization and provide an example of when you would use them.
- 7. What is the significance of residual analysis in regression model building and how is it performed?
- 8. Describe the steps involved in conducting a simple linear regression analysis and interpreting its results.
- 9. How do you diagnose multicollinearity in a multiple linear regression model and what are its potential consequences?

10. Can you provide an example of how you would use autoregression in a regression model building process and explain its importance?

Course Code & Title	MSBST03IDC01-STATISTICAL DATA ANALYSIS USING SPSS		
Programme Offered	Department of Statistical Sciences Semester III		
Course	• Demonstrate proficiency in navigating SPSS interface components		
Objectives	including the Data Editor window, SPSS Output window, and		
	various drop-down menus.		
	• Able to create, modify, import, and transform datasets using		
	SPSS.		
	• Gain an understanding of different types of variables and how to		
	assign appropriate labels to them within SPSS.Learn to conduct inferential statistical analysis techniques such as		
	t-tests, ANOVA, correlation, regression, confidence intervals, and		
	non-parametric tests using SPSS.		
		• Develop the ability to interpret and communicate the results of	
5	statistical analyses conducted in SPSS.		

POOL G: INTERDISCIPLINARY ELECTIVE COURSE (IDC)

Modules	Content	Module Outcome
Module I Introduction to SPSS and its interface (15 Hours)	SPSS windows, Data editor window, Types of variables and labels, SPSS output window, Drop down menus of SPSS, Creating and modifying data files	 Proficiency in navigate various SPSS windows. Able to differentiate between categorical and continuous variables and understand their significance in data analysis. Creating and modifying data files in SPSS.
Module II	Import of data files, Transform drop	• Skills to transform variables

e option, Data drop down Split files, Weight cases, cases. plots and graphs, Bar n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics, ncies, Cross tabs,		
plots and graphs, Bar n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 operations such as computing new variables, recoding existing variables. Able to utilize advanced data manipulation features of SPSS. Demonstrate proficiency in creating various plots and graphs in SPSS. Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop-down menu in SPSS. 	
plots and graphs, Bar n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 new variables, recoding existing variables. Able to utilize advanced data manipulation features of SPSS. Demonstrate proficiency in creating various plots and graphs in SPSS. Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop-down menu in SPSS. 	
n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 variables. Able to utilize advanced data manipulation features of SPSS. Demonstrate proficiency in creating various plots and graphs in SPSS. Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop-down menu in SPSS. 	
n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 creating various plots and graphs in SPSS. Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop- down menu in SPSS. 	
n, Pie diagram, Multiple agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 in SPSS. Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop-down menu in SPSS. 	
agram, Histogram, Box -P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 Develop the skills to interpret and analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop- down menu in SPSS. 	
-P plot, Q-Q plot, Scatter n. e drop down menu, otive statistics,	 analyze graphical representations generated in SPSS. Demonstrate proficiency in conducting various statistical analyses using the Analyze drop- down menu in SPSS. 	
n. e drop down menu, otive statistics,	 Demonstrate proficiency in conducting various statistical analyses using the Analyze drop- down menu in SPSS. 	
e drop down menu, otive statistics,	Demonstrate proficiency in conducting various statistical analyses using the Analyze drop- down menu in SPSS.	
otive statistics,	conducting various statistical analyses using the Analyze drop- down menu in SPSS.	
otive statistics,	conducting various statistical analyses using the Analyze drop- down menu in SPSS.	
otive statistics,	analyses using the Analyze drop- down menu in SPSS.	
	down menu in SPSS.	
ncies, Cross tabs,		
	Gain proficiency in conducting	
re means-independent		
t test, paired sample t test,	inferential statistics tests such as	
A, Correlation,	frequencies, cross tabs,	
sion, Confidence intervals,	independent sample t-tests, paired	
rametric test.	sample t-tests, ANOVA,	
Au	correlation, regression.	
ook	Er	
1. Hinton P R, Brownlow C, McMurray, I. and Cozens, B.(2004):		
SPSS Explained, Routledge, Taylor and Francis group, New York.		
nce Book		
	eritt (2003): A Handbook of	
-		
successful completion of this	s course, student will be able to:	
	inton P R, Brownlow C, McN PSS Explained, Routledge, Ta mce Book Sabine Landau, Brian S. Eve Statistical Analyses Using S	

various diagrams.

- Computing descriptive statistics, the comparison of means, ANOVA, non-parametric tests, simple correlation and regression procedures and apply for real data sets.
- 3. Acquire the skills of plotting different graphs using SPSS.

TEACHING LEARNING STRATEGIES

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester	60
Evaluation(ESE)	
Continuous Ev	valuation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

- 1. Describe the use of Recode command in SPSS
- 2. Describe the use of Weight case facility in SPSS
- 3. What is the use of split file option in SPSS?
- 4. Distinguish between Value label and Values options in SPSS.
- 5. Explain the method of constructing and interpreting a Boxplot
- 6. Explain crosstab facility and its uses available in SPSS
- 7. How do you construct a frequency table and histogram using SPSS?
- 8. Explain Transform dropdown menu in SPSS.
- 9. Describe briefly the various options available in SPSS Analyze menu.

10. Explain different methods for constructing graphs in SPSS.

Course Code & Title	MSBST03IDC02-STATISTICAL DATA ANALYSIS USING R		
Programme offered	Department of Statistical Sciences Semester III		
Course	• Demonstrate a solid understanding of the fundamental concepts in		
Objectives	R programming, including objects and their classes, operators,		
	vectors, matrices, lists, and data frames.		
	• Gain proficiency in indexing and accessing data within R, as well		
	as importing and exporting data from various file formats.		
	• Able to apply R programming to compute descriptive statistics.		
	• Learn to create various graphical representations of data using R.		
	• Develop the skills to plot cumulative distribution functions		
	(CDFs) and probability density functions (PDFs) for various		
	values of parameters in standard probability distributions using R.		
	• Learn to generate random samples from standard probability		
	distributions in R.		

POOL G: INTERDISCIPLINARY ELECTIVE COURSE

Modules	Content	Module Outcome
Module I Introduction to R (15 Hours)	Introduction to R- Objects and their classes, operators, vectors and matrices, list and data frames, indexing and accessing data, importing and exporting data. Common built-in functions. Simple applications - Descriptive statistics.	 Demonstrate a solid understanding of the fundamental concepts of R programming. Acquire proficiency in indexing and accessing data within R, enabling them to effectively manipulate datasets for analysis. Able to apply basic descriptive statistics techniques in R to analyze datasets effectively.

Module II R-Graphics (15 Hours)	R-Graphics- Histogram, Box-plot, Stem and leaf plot, Scatter plot, Q- Q plot. Looping- for loop, repeat loop, while loop, if command, ifelse command.	 Demonstrate proficiency in creating various types of graphical representations using R, including histograms, box plots, etc. Able to apply their knowledge of R graphics and looping structures to conduct exploratory data analysis and statistical inference tasks.
Module III Basic probability and distribution (15 Hours)	Basic concepts of probability and random variables, Probability distributions (Binomial, Poisson, Geometric, Uniform, Normal, Gamma, Beta), Plotting of cdf and pdf for different values of the parameters of standard distributions. Generations of random samples from standard distributions.	 Understanding of basic concepts of probability theory and random variables. Understanding different probability distributions commonly used in statistical analysis. Demonstrate the ability to plot cumulative distribution functions (CDFs) and probability density functions (PDFs) for different parameter values of standard distributions using R.
Module IV Descriptive statistics (15 Hours)	The Descriptive statistics, the comparison of means, ANOVA, non-parametric tests, correlation and regression procedures.	 Demonstrate mastery in descriptive statistics, including measures of central tendency, dispersion, and distributional shape. Able to conduct and interpret various tests for comparing means, including independent samples t-tests, paired samples t-tests, etc.

	Text Books			
	1. Purohit, S. G, Ghore, S. D and Deshmukh, S. R. (2004): Statistics			
Df	Using R. Narosa.			
References	Reference Books			
	1. Dalgaard, P. (2008): Introductory Statistics with R, (Second			
-	Edition), Springer.			
Course	After successful completion of this course, student will be able to:			
Outcomes	1. Understand various built-in functions in R programming for			
	statistical data analysis.			
	2. Understand different functions in R programming for writing			
	computer programmes and develop computer programmes for			
	different problems.			
	3. Understand different statistical test using R software			

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation(ESE)	60
Continuous I	Evaluation
Tests	16
Assignment	08
Seminar	16
Total	40

Sample Questions to Test Outcomes:

1. How will you install R in your computer?

- 2. How will you save, store and retrieve workspace in R?
- 3. Explain the seq() and rep() in R with examples.
- 4. How will you import data from excel to R?
- 5. What are the advantages of R over other statistical softwares?
- 6. Explain different types of arithmetic operators and assignment operators in R. Give examples.
- 7. Explain different ways of defining matrices in R.
- 8. Explain the different forms of sequence function in R. Give examples.
- 9. Expalin the built-in functions in R with examples.
- 10. Describe low level plotting functions in R.

		FOURTH S	EMES	TER					
SI No	Course Code	Title of Paper		Contact Hours/Week		Marks			
		-	L	T/S	P	ESE	CE	Total	Credits
4.1	MSBST04DSC12	Project/Dissertation and	2			60	40	100	12
	MSBS104DSC12	Subject Viva	20	2	1	-			
		18/ 11		0	1	60	40	100	12
		DISCIPLINE SPECIFIC EL	ECTI	VES (I	DSE)				<u> </u>
		Elective-I (DSE) (Practical)	1000						
4.2	MSBST04DSExx	(One course has to be chosen	3	2		60	40	100	3
		from Pool H)							
		Elective-II (DSE) (One	1	-					
4.3	MSBST04DSExx	course has to be chosen from	3	2	-	60	40	100	3
		Pool I)							
	1	Total Credits	1		1	1	1	1	18

L=Lecture, T/S=Tutorials/Seminar, P/I=Practical/Internship, CE =Continuous Evaluation, ESE = End

Semester Evaluation

SI No		POOL H:- List of Course	es for E	lective	(Pract	ical)			
51 110	DISCIPLINE SPECIFIC ELECTIVES (DSE)								
4.2.1	MSBST04DSE13	Biostatistical Computing Using SAS-III (Practical)		2	6	60	40	100	3
4.2.2	MSBST04DSE14	Biostatistical Computing Using R-III (Practical)		2	6	60	40	100	3
	POOL I:- List of Courses for Elective DISCIPLINE SPECIFIC ELECTIVES (DSE)								
4.3.1	MSBST04DSE15	Categorical Data Analysis	4	1			1		3
4.3.2	MSBST04DSE16	Advanced Time Series Analysis	4	1					3
4.3.3	MSBST04DSE17	Actuarial Statistics	4	1					3
4.3.4	MSBST04DSE18	Statistical Quality Control	4	1					3

4.3.5	MSBST04DSE19	Advanced Bayesian Computing with R	4	1			3
4.3.6	MSBST04DSE20	Demographic Studies	4	1			3
4.3.7	MSBST04DSE21	Analysis of Longitudinal Data	4	1	1		3

POOL H: DISCIPLINE SPECIFIC ELECTIVE COURSE

Course Code & Title	MSBST04DSE13-BIOSTATISTICAL COMPUTING USING SAS - III (PRACTICAL)				
Programme	M.Sc. Biostatistics	Semester	IV		
Course	• To introduce some advanced statistical computing techniques in				
Objectives	biostatistics to extract information and visualization thereby				
	enabling them to perform data analysis effectively and efficiently				
	in SAS programming.				
	• Illustrate different statistical techniques based on all the elective				
	course in fourth semester.				

Modules	Content	Module Outcome			
	Biostatistical Computing IV is a	• Describe different			
5	practical course. The practical is based	statistical technique to			
A.	on all the elective courses in the	solve problems coming			
	fourth semester.	under all the elective			
2	NA.	courses in fourth			
1	MUD THER	semester.			
Course	After successful completion of this course, stu	udent will be able to:			
Outcomes	1. Equipped with different theoretical methods in biostatistics to				
	achieve the objectives.				
	2. Enhanced with the basic concepts of statistical theories besides				
	developing their ability to handle real world problems with large				
	scale data.				

TEACHING LEARNING STRATEGIES

• Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION

• Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation	60
Continuous Eva	luation
Practical Tests	32
Record	8
Total	40

POOL H: DISCIPLINE SPECIFIC ELECTIVE COURSE

Course Code & Title	MSBST04DSE14-BIOSTATISTICAL COMPUTING USING R - III (PRACTICAL)			
Programme	M.Sc. Biostatistics Semester IV			
Course	• To introduce some advanced biostatistical computing techniques			
Objectives	 To introduce some advanced biostatistical computing techniques in applied statistics to extract information and visualization thereby enabling them to perform data analysis effectively and efficiently in R programming. Illustrate different biostatistical techniques based on all the elective course in fourth semester. 			
1)	90			

Modules	Content	Module Outcome
	Biostatistical Computing IV is a practical course. The practical is	Describe different statistical technique to
	based on all the elective courses in the fourth semester.	solve problems coming under all the elective courses in fourth semester.
Course	After successful completion of this course, s	

Outcomes	1. Equipped with different theoretical methods in biostatistics to
	achieve the objectives.
	2. Enhanced with the basic concepts of biostatistical theories besides
	developing their ability to handle real world problems with large
	scale data.

- Practical sessions through computers, statistical computations, Team Learning MODE OF TRANSACTION
 - Lecture, Seminar, Hands on training

ASSESSMENT RUBRICS

Weightage 60		
32		
08		
40		

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

Course Code & Title	& MSBST04DSE15- CATEGORICAL DATA ANALYSIS					
Programme	M.Sc. Biostatistics	Semester IV				
Course Objectives	 their implications in res Study various sampling random sampling, strati apply them appropriate Learn about exact tests 	entals of statistical measurement scales and search design and analysis. frameworks and techniques, including ified sampling, and cluster sampling, and ly in research settings. and their significance in situations where sts may not be applicable.				

Modules	Content	Module Outcome
Module I Overview of analysis strategies (15 Hours)	Scale of Measurements, sampling frameworks, overview of analysis strategies, Chi-square statistic, exact tests, difference in proportions, odds ratio and relative risk, sensitivity and specificity, McNemar's test.	 measurement. Apply appropriate measurement scales in research design and data analysis.
Module II Measure of association and contingency tables (15 Hours)	Mantel-Haenszel test, Measure of association, sets of 2 x r tables, sets of s x 2 tables, relationship between sets of tables.	 Demonstrate proficiency in selecting and implementing appropriate sampling frameworks for different research scenarios. Understand the strengths and limitations of various sampling methods.
Module III Mantel- Haenszel methodology and application (15 Hours)	Association, exact tests for association, Measure of association, observer agreement, test for ordered differences, General Mantel-Haenszel methodology, Mantel- Haenszel applications.	 Gain familiarity with descriptive statistics, hypothesis testing, and regression analysis. Identify appropriate analysis strategies based on research objectives and data characteristics. Evaluate the assumptions and validity of different analysis techniques.
Module IV Advanced topics	Advanced topics: application to repeated measures, Wilcoxon-Mann- Whiteney test, Kruskal-Wallis test,	 Navigate and manipulate data tables efficiently.

(15 Hours)	Friedman's Chi-square test, Aligned • Perform basic to advanced data		
	rank test for randomised complete transformations.		
	blocks, Durbin's test for balanced • Generate informative tables and		
	incomplete blocks, Rank analysis of graphical displays to		
	covariance. summarize data effectively.		
Y	Text Books		
	1. Stokes, M. E., Davis, C. S., & Koch, G. G. (2012). Categorical data		
	analysis using SAS. SAS institute.		
	2. Agresti, A. (2012). Categorical data analysis (Vol. 792). John Wiley &		
	Sons.		
References	Reference Books		
	 Powers, D., & Xie, Y. (2008). Statistical methods for categorical data analysis. Emerald Group Publishing. Sloane, D., & Morgan, S. P. (1996). An introduction to categorical data analysis. Annual review of sociology, 22(1), 351-375. 		
	3. Lawal, B., & Lawal, H. B. (2003). <i>Categorical data analysis with SAS and SPSS applications</i> . Psychology Press.		
	After successful completion of this course, student will be able to:		
	1. Demonstrate a thorough understanding of various statistical		
	methods.		
- A	2. Proficiency in working with data tables, conducting data		
Course	manipulation, and performing statistical analysis, enhancing their		
Outcomes	ability to manage and analyze large datasets in real-world research		
-1/	settings.		
	3. Cultivate critical thinking skills by critically evaluating research		
	designs, selecting appropriate sampling frameworks.		
	4. Communicate statistical findings clearly and effectively through		
	written reports, presentations, and graphical representations.		

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation	60	
Continuous Ev	aluation	
Tests	16	
Assignment	08	
Seminar	16	
Total	40	

Sample Questions to test Outcomes:

- Explain the different scales of measurements and how they impact statistical analysis. Provide examples for each scale.
- 2. Discuss the importance of sampling frameworks in research design. How do different sampling techniques affect the validity of study findings?
- 3. Give an overview of analysis strategies commonly used in research. Compare and contrast their strengths and limitations.
- 4. Demonstrate how to work with tables in the SAS system for data analysis and interpretation.
- 5. Explain the Chi-square statistic and its significance in hypothesis testing. Provide a real-world example illustrating its application.
- 6. Discuss the concept of odds ratio and relative risk in epidemiological studies. How are they calculated and interpreted?
- 7. Define sensitivity and specificity in diagnostic testing. How do these measures inform the accuracy of a diagnostic test?
- 8. Explain McNemar's test and its application in paired nominal data analysis. Provide a step-by-step example to illustrate its usage.
- 9. Describe the Mantel-Haenszel test and its role in analyzing categorical data. Provide examples of situations where this test would be appropriate.

10. Discuss advanced topics such as repeated measures analysis and non-parametric tests like Wilcoxon-Mann-Whitney, Kruskal-Wallis, and Friedman's Chi-square tests.

Course Code & Title	MSBST04DSE16-ADVANCED TIME SERIES ANALYSIS		
Programme	M.Sc. Biostatistics	Semester	IV
Course Objectives	 Understand the fundamental cartheir applications in modeling foundation for further analysis. Learn to analyze auto-covaria density properties of time a characterize and interpret temp Gain in-depth knowledge of au (MA), autoregressive mo autoregressive integrated more enabling students to select a different time series data sets. Explore spectral analysis, diagnostic checks for model wavanced analytical tools for series data effectively. 	time series data, pro ance, auto-correlation series data, enabling oral patterns effective utoregressive (AR), m ving average (AR) oving average (ARI and apply appropriat periodgrams, correl validation, equipping	viding a solid , and spectra g students to ely. oving average RMA), and MA) models for models for lograms, and students with

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

Modules	Content	Module Outcome
Module I Revisit to foundations of time series (15 Hours)	Motivation, Time series as a discrete parameter stochastic process, Auto- Covariance, Auto-Correlation and spectral density and their properties. Exploratory time series analysis, Exponential and moving average smoothing, Holt-Winter smoothing, forecasting based on smoothing,	 Understanding Stochastic Processes. Applying Stochastic Processes to Time Series Analysis. Interpreting Stochastic Processs Properties. Applying Stochastic Processes in Forecasting:

	Adaptive smoothing.	
Module II Detailed study of the stationary ARMA models (15 Hours)	Detailed study of the stationary process: Autoregressive, Moving Average, Autoregressive Moving Average and Autoregressive Integrated Moving Average Models. Choice of AR/MA periods.	 Understanding exploratory Analysis Techniques. Understanding Smoothing Methods. Characterizing Stationary Processes. Interpreting Time Series Properties.
Module III Estimation and forecasting of ARIMA models (15 Hours)	Estimation of ARMA models: Yule- Walker estimation for AR Processes, Maximum likelihood and least square estimation for ARMA Processes, Discussion (without proof) of estimation of mean, Auto- covariance and autocorrelation function under large samples theory, Residual analysis and diagnostic checking. Forecasting using ARIMA models.	 Understanding forecasting Techniques. Identifying model Selection and Estimation. Validation and Diagnostic Checks. Utilize advanced analytical tools such as spectral analysis, periodograms, and correlograms to analyze and interpret time series data effectively, enhancing their ability to derive insights and make informed decisions.
Module IV Spectral and seasonal analysis (15 Hours)	Spectral analysis of weakly stationary process. Periodogram and correlogram analysis. Seasonal ARIMA models (Basic concepts only), ARCH and GARCH models (Basic concepts only)	 Understand seasonal and non- seasonal models such as seasonal ARIMA, ARCH, and GARCH models, enabling them to capture and forecast complex temporal patterns within data sets. Apply advanced analytical techniques including spectral

	analysis, periodograms, and		
	correlograms to analyze and		
	interpret time series data		
	effectively.		
	Text Books		
	1. Box G.E.P and Jenkins G.M. (1970). Time Series Analysis, Forecasting		
	and Control. Holden -Day.2. Brockwell P.J and Davis R.A. (1987). Time Series: Theory and		
References	Methods, Springer Verlag.		
References	Reference Books		
	1. Abraham B and Ledolter J.C. (1983). Statistical Methods for		
	Forecasting, Wiely		
	2. Anderson T.W. (1971). Statistical Analysis of Time Series, Wiely.		
	3. Fuller W.A. (1978). Introduction to Statistical Time Series, John Wiley.		
	After successful completion of this course, student will be able to:		
Course	1. Understand exploratory time series analysis and its real		
Outcomes	data application.		
	2. Understand autoregressive models and their estimation methods.		
	3. Understand non-linear time series models and their		
1	estimation methods.		
	4. Apply statistical techniques to time series data and make		
N.	predictions.		

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester	60	
Evaluation(ESE)		

Continuous Evaluation	
16	
08	
16	
40	

Sample Questions to Test Outcomes:

- 1. What is the significance of time series analysis in understanding data trends and making predictions? Discuss the motivation behind studying time series data.
- 2. Define a discrete parameter stochastic process and explain how time series can be viewed as such a process. How does this perspective help in analyzing time series data?
- 3. Explain the concepts of auto-covariance, auto-correlation, and spectral density in the context of time series analysis. Discuss their properties and their roles in characterizing time series behavior.
- 4. Describe the techniques involved in exploratory time series analysis. How do tests for trend and seasonality contribute to understanding time series patterns?
- Compare and contrast exponential smoothing, moving average smoothing, and Holt-Winter smoothing methods for time series forecasting. Provide examples illustrating their application.
- 6. Provide a detailed study of stationary processes, including autoregressive (AR), moving average (MA), autoregressive moving average (ARMA), and autoregressive integrated moving average (ARIMA) models. Discuss the choice of AR/MA periods in model selection.
- 7. Discuss different estimation methods for ARMA models, including Yule-Walker estimation for AR processes and maximum likelihood/least square estimation for ARMA processes. Explain the concept of residual analysis and diagnostic checking.
- 8. Explain the concept of spectral analysis for weakly stationary processes. Discuss the use of periodograms and correlograms in analyzing spectral density and autocorrelation functions.

9. Introduce the basic concepts of seasonal ARIMA models, ARCH models, and GARCH models in time series analysis. Discuss their relevance and applications in modeling time series data.

Course Code & Title	MSBST04DSE17- ACTUARIAL STATISTICS			
Programme	M.Sc. Biostatistics Semester IV			
Course Objectives	 Develop a greater understandi application in actuarial statistic Describe the core areas of ac areas actuarial principles, theo Describe estimation procedure Explain the concept of surviva Understand the application o environment. Describe Net premiums and its Expand their applied knowled actuarial studies and statistics. 	cs. etuarial practice and ries and models. s for lifetime distril l models. f knowledge of th s various types. dge in various spec	d relate to those butions. le life insurance	

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

Modules	Content	Module Outcome
Module I Insurance and utility theory (15 Hours)	Insurance and utility theory, models for individual claims and their sums, survival function, curtate future lifetime, force of mortality. Life tables and its relation with survival function, examples, assumptions for fractional ages, some analytical laws of mortality, select and ultimate tables.	 Explains the utility theory and insurance. Explain survival function and application. Examine the properties of force of mortality. Define Life tables and its relation with survival function, examples.
Module II	Multiple life functions, joint life and	• Explain Multiple life functions

Multiple life	last survivor status, insurance and		and its properties.
functions	annuity benefits through multiple life	•	Articulate the insurance and
(15 Hours)	functions evaluation for special		annuity benefits through
	mortality laws. Multiple decrement		multiple life functions
	tables, central rates of multiples		evaluation for special mortality
	decrement, net single premiums and	2	laws.
	their numerical evaluations.		Explains the Multiple
	10/ 11/		decrement tables.
		•	Describe net single premiums
			and their numerical evaluations.
	Compound Poisson distribution and	•	Define Distribution of
Module III	its applications. Principles of		aggregate claims.
Compound	compound interest: Nominal and	•	Derive the compound Poisson
Poisson	effective rates of interest and	~	distribution and explain its
distribution and	discount, force of interest and	0	applications.
its applications	discount, compound interest,	•	Explain Principles of
(15 Hours)	accumulation factor, continuous		compound interest and its
	compounding.		attributes.
	Insurance payable at the moment of		
	death and at the end of the year of		
	death-level benefit insurance,		1
- A	endowment insurance, differed	•	Explain the Life insurance and
Module IV	insurance and varying benefit	<i>r</i> .	its types.
Different types	insurance, recursions, commutation	•	Describe Insurance payable at
of insurance	functions. Life annuities: Single	0	the moment of death and at the
and amenities	payment, continuous life annuities,	2	end of the year of death-level
(15 Hours)	discrete life annuities, life annuities		benefit insurance
	with monthly payments,	•	Explain the Life annuities and
	commutation functions, varying		its types.
	annuities, recursions, complete		
	annuities immediate and apportion		
	able annuities-due.		

References	Text Books		
	1. Beard, R.E., Penlikainen, T. and Pesonnen, E (1984): Risk Theory: The		
	Stochastic Basis of Insurance, 3rd Edition, Chapman and Hall, Londan.		
	Reference Books		
	1. Bowers, N.L., Gerber, H.U., Hickman, J.E., Jones, D.A. and Nesbitt,		
-	C.J. (1997): Actuarial Mathematics', Society of Actuarias, Ithaca,		
	Illiois, U.S.A., second Edition.		
	2. Neill, A. (1977): Life Contingencies, Heineman.		
Course	After successful completion of this course, student will be able to:		
Outcomes	1. Understand the principles of insurance and utility theory, and apply		
	them to analyze individual claims and their aggregate sums.		
	2. Analyze the relationship between life tables and survival functions,		
	and apply this knowledge to evaluate insurance and annuity		
	benefits.		
	3. Demonstrate proficiency in using multiple decrement tables to		
	assess insurance risks.		
	4. Apply the Compound Poisson distribution and principles of		
	compound interest to model insurance-related phenomena.		
	5. Develop skills in evaluating and designing life annuities, including		
	single payment, continuous, discrete, and monthly payment		
5	annuities.		
TEACHINGI	FADNINC STDATECIES		

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester	60	
Evaluation(ESE)		
Continuous Evaluation		

100 g m 104	
Total	40
Seminar/Viva	16
Assignment	08
Tests	16

- 1. Define insurance and utility theory. How does utility theory influence decisionmaking in insurance?
- 2. Discuss models for individual claims and their sums in the context of insurance. How are these models used to assess risk and determine premiums?
- 3. Explain the concepts of survival function, curtate future lifetime, and force of mortality in the context of life insurance. How are these concepts related?
- 4. Describe life tables and their relationship with the survival function. Provide examples to illustrate the use of life tables in actuarial calculations.
- 5. What assumptions are made for fractional ages in life tables? How do these assumptions impact the accuracy of actuarial calculations?
- 6. Discuss some analytical laws of mortality commonly used in actuarial science. What are select and ultimate tables, and how are they applied?
- 7. Explain multiple life functions and their significance in joint life and last survivor status insurance policies. How are insurance and annuity benefits evaluated using multiple life functions?
- 8. Define multiple decrement tables and central rates of multiple decrements. How are net single premiums calculated using multiple decrement tables?
- 9. Describe the compound Poisson distribution and its applications in insurance. How is it used to model the frequency and severity of insurance claims?
- 10. Discuss the principles of compound interest, including nominal and effective rates of interest, force of interest and discount, and continuous compounding. How are these principles applied in actuarial calculations for insurance products like endowment and annuity policies?

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

Title	Course Code & MSBST04DSE18-STATISTICAL QUALITY CONTROL		
Programme	M.Sc. Biostatistics	Semester	IV
Course Objectives	 Understand the principles and control (SPC) and the signific management. Develop proficiency in consecontrol charts for variables (Recharts), as well as modified consecontrol charts for variables (Recharts), as well as modified consecutives. Gain insight into the perfore operating characteristic (OC curves. Learn about advanced control average control charts, export (EWMA) charts, and cumulati Master various sampling plat sampling, multiple sampling including rectifying inspection Analyze the performance of sata verage outgoing quality (AO and average total inspection (A understand and apply samplimits with known and unkniplans with double specification) 	ficance of control charactering and interpret a, s charts) and attribu- ontrol charts. Firmance of control of () and average run () and sequential satisfies () () and sequential satisfies () (), average sample n (), average sampl	arts in quality ting Shewhar tes (p, np, c, u charts through length (ARL) luding moving oving average arts. npling, double mpling plans etrics like OC number (ASN)

Modules	Content	Module Outcome
	Introduction to quality and quality	• Understand the theory behind
Module I	assurance, total quality	control charts and their role in
Introduction to	management, quality control,	SPC.
quality and	Statistical process control, theory of	• Demonstrate proficiency in
quality	control charts, Shewhart control	constructing and interpreting

assurance	charts for variables, R,s charts, p,	Shewhart control charts for
(15 Hours)	np, c, u charts, modified control charts.	 variables (R, s charts) and attributes (p, np, c, u charts). Explore modified control charts and their applications in various industries.
Module II Control charts and process capability indices (15 Hours)	O.C and ARL curves of control charts, moving average control charts, EWMA charts, CUSUM charts, process capability analysis, process capability indices.	 Analyze operating characteristic (OC) and average run length (ARL) curves of control charts. Apply moving average control charts, exponentially weighted moving average (EWMA) charts, and cumulative sum (CUSUM) charts to monitor process variability. Conduct process capability analysis and calculate process capability indices to assess the performance of a process.
Module III Sampling Plans (15 Hours)	Single sampling, double sampling, multiple sampling and sequential sampling plans, rectifying inspection plans, measuring performance of the sampling plans - OC,AOQ,ASN, ATI curves.	 Differentiate between single sampling, double sampling, multiple sampling, and sequential sampling plans. Develop rectifying inspection plans to improve quality control processes. Measure the performance of sampling plans using metrics such as OC, average outgoing quality (AOQ), average sample number (ASN), and average total inspection (ATI) curves.

Module IV Sampling plans with double specification limits (15 Hours)	 Sampling plans for single specification limit with known and unknown variance. Sampling plans with double specification limits, comparison of sampling plans by variables and attributes, Continuous sampling plans I, II and III. Design sampling plans for single specification limits with known and unknown variance. Implement sampling plans with double specification limits and compare them based on variables and attributes. Explore continuous sampling plans (I, II, and III) and understand their applications in industries with continuous production processes. 	
References	Text Books 1. Montgomory,D.C.(2005),IntroductiontoStatisticalQualityControl.5thEd ition.Wiley,New-York. 2. Gerant,E.L.andLeavenWorth,R.S.(1980).StatisticalQualityControl.Mc GrawHill Reference Books 1. Duncan, A.J.(1986).Quality Control and Industrial Statistics. 2. Mittage, H.J. and Rinne, H. (1993). Statistical Methods for Quality Assurance. Chapmanand Hall. 3. Oakland,J.S.and Follorwel, R.F.(1990).Statistical Process Control. East-West Press. 4. Schilling,E.G.(1982).AcceptanceSamplinginQualityControl.MarcelDe kker.	
1	After successful completion of this course, student will be able to: 1. Understand the construction various control charts and their real	
Course	data applications.	
Outcomes	 Understand various process capability indices and their applications. 	
	3. Understand various different acceptance sampling plans for attributes	

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

-

• Lecture, Seminar, Discussion, Questioning and Answering ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation(ESE)	60
Continuous Ev	aluation
Tests	16
Assignment	08
Seminar/Viva	16
Total	40

- 1. Define Statistical Process Control (SPC) and discuss its importance in quality management. What are the key objectives of implementing SPC in manufacturing processes?
- 2. Explain the theory of control charts in SPC. What are the fundamental principles behind control charts, and how do they help in monitoring and controlling process variability?
- 3. Describe Shewhart control charts for variables, including R charts and s charts. How are these charts constructed, and what do they indicate about process stability and variation?
- 4. Discuss p, np, c, and u charts in SPC. What types of processes are these charts suitable for, and how are they interpreted in terms of process control?
- 5. Explain modified control charts and their applications in SPC. What modifications can be made to traditional control charts, and under what circumstances are these modifications necessary?
- 6. Define Operating Characteristic (OC) and Average Run Length (ARL) curves of control charts. How are these curves used to evaluate the performance of control charts?

- 7. Describe moving average control charts, exponentially weighted moving average (EWMA) charts, and cumulative sum (CUSUM) charts. What advantages do these charts offer over traditional control charts?
- 8. Explain process capability analysis and process capability indices. How are these measures used to assess the ability of a process to meet specified quality requirements?
- 9. Discuss single sampling, double sampling, multiple sampling, and sequential sampling plans. What are the differences between these sampling plans, and how are they applied in quality inspection?
- 10. Describe sampling plans for single specification limits and double specification limits. How do these sampling plans vary based on known and unknown variance, and how are they evaluated using OC, AOQ, ASN, and ATI curves?

Course Code &	MSBST04DSE19- ADVANCED BAYESIAN COMPUTING WITH R		
Title			
Programme	M.Sc. Biostatistics	Semester	IV
	• Understand the fundamental principles of statistical decision-		
	making, including randomized decisi	on rules and s	tandard loss
	functions.		
	 Explore the concept of prior information and its incorporation into decision-making. Master the application of Bayes' theorem for inference, including the estimation of prior and posterior densities, and gain proficiency in analyzing parametric families and likelihoods, such as the exponential family. 		
Course			
Objectives			
<1/			
1			
	• Apply learned concepts and techniques to practical examples and		
	real-world problems, using software packages such as Learn		
	Bayes and Win-BUGS.		

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

Modules	Content	Module Outcome

Module I Fundamentals of Bayesian concepts (15 Hours)	Statistical decision problem, randomized decision rule, decision principle, standard loss functions, Prior information, subjective determination of prior density, non- informative priors, maximum entropy priors, conjugate priors, discrete prior. Parametric family and likelihood, exponential family, Bayes' theorem for inference, prior and posterior densities.	 Understand and explain the concept of statistical decision-making. Apply decision principles effectively in various decision-making scenarios. Evaluate and compare different decision strategies based on their performance in minimizing expected loss and achieving desired outcomes.
Module II Bayes models and Learn Bayes package (15 Hours)	single parameter models, normal distribution with known variance and unknown mean, normal with known mean and unknown variance, Poisson model, normal distribution with both parameters unknown, multinomial model, Dirichlet prior, Bioassay experiment, comparing two proportions, predictive distribution, beta-binomial distribution, multivariate normal distribution, Introduction to Learn Bayes package, Examples using Learn Bayes package.	 Demonstrate proficiency in formulating and specifying prior. Apply Bayes' theorem for inference tasks and analyze the impact of prior specification on posterior inference. Evaluate the suitability of different prior distributions for specific modeling scenarios.
Module III Introduction to Markov Chain Monte Carlo methods (15 Hours)	Computing integrals using Monte- Carlo simulation, approximation based on posterior mode, importance sampling, Markov Chain Monte Carlo methods, Metropolis-Hastings algorithm, random walk, Gibbs sampling.	 Implement computational methods such as Monte Carlo simulation, importance sampling, and Markov Chain Monte Carlo (MCMC). Evaluate the performance and efficiency of different

| Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	Hierarchical models, shrinkage estimators, posterior predictive model	 computational techniques in generating posterior samples and estimating posterior distributions. Understand the concept of hierarchical models and their 	
Module IV Hierarchical models (15 Hours)	checking, comparison of hypotheses, Bayes factor, one sided test for normal mean, two-sided test for normal mean, normal linear regression model, prediction of future observations, examples and R codes, introduction to Win-BUGS package.	 nerarchical models and their application in modeling complex data. Perform posterior predictive model checking to assess the adequacy of hierarchical models and identify potential model misspecifications. 	
	 Text Books 1. Jim Albert (2007). Bayesian Computation with R, New York: Springer Verlag. 2. Berger,O.J.(1985).StatisticaldecisionTheoryandBayesianAnalysis,Seco ndEdition,SpringerVerlag. 3. Bensal, A. K.(2008).Bayesian Parametric Inference, New Age, Delhi. Reference Books 		
References	 Ferguson, T.S. (1967). Mathematical Statistics: ADecision Theoretic Appr oach, Academic Press, New-York. 		
4)	 Bolstad, W.(2004). Introduction to Bayesian Statistics, Hoboken, NJ: John Wiley. Gelman,A.,Carlin,J.,Stern,H.andRubin,D.(2003).BayesianDataAnalys is,NewYork:ChapmanandHall. Gilks, W. R., Richardson, S and Spiegelhalter, D.J.(1996). Markov Chain Monte Carlo in Practice. Chapman & Hall/ CRC, New York. 		
Course Outcomes	After successful completion of this course, student will be able to: 1. Understand the advantageous Bayes estimation over that based on frequentist approach. 2. Understand the LearnBayes package for various Bayesian		

computations

- 3. Understand MCMC methods in various situations in which the exact computation is difficult.
- 4. Understand Gibbs sampling to generate random samples from a multivariate distribution.

TEACHING LEARNING STRATEGIES

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation(ESE)	60	
Continuous Evaluation		
Tests	16	
Assignment	08	
Seminar/Viva	16	

Sample Questions to Test Outcomes:

1. Define a randomized decision rule and explain its significance in statistical decisionmaking.

2. Discuss the role of prior information in Bayesian inference and explain how it is incorporated into the decision-making process.

3. Describe the concept of maximum entropy priors and explain when they are useful in Bayesian analysis.

4. Compare and contrast Monte Carlo simulation and importance sampling methods for estimating posterior distributions.

5. Explain the Metropolis-Hastings algorithm and discuss its advantages and limitations in Markov Chain Monte Carlo (MCMC) sampling.

6. Provide an example of a hierarchical model and explain how it can be used to analyze data with nested levels of variability.

7. Discuss the concept of shrinkage estimators and explain how they address overfitting in hierarchical modeling.

8. Explain the process of posterior predictive model checking and discuss its importance in assessing model adequacy.

9. Compute the Bayes factor for two competing hypotheses and interpret the results in the context of model comparison.

10. Implement the Win-BUGS software package to perform Bayesian analysis on a given dataset, and interpret the results obtained.

Course Code & Title	& MSBST04DSE20- DEMOGRAPHIC STUDIES M.Sc. Biostatistics Semester				
Programme					
Course	• To introduce students to key con-	cepts and theories	s in		
Objectives	demography.				
	• To provide students with an understanding of demographic data				
	sources and measurement technic	ques.			
	• To familiarize students with dem	ographic method	s for analyzing		
population dynamics.					
• To demonstrate the applications of demographic ana various fields, including public health, economics, at		of demographic a	nalysis in		
		, and social			
<1/	policy.	51			

	POOL I:	DISCIPLINE	SPECIFIC	ELECTIVE	COURSE
--	---------	------------	----------	----------	--------

Modules	Content	Module Outcome
---------	---------	----------------

	Definition and scope of demography,	•	Gain a comprehensive
	Historical development of		understanding of demographic
	demography, Importance and		concepts such as population
	applications of demographic research,		size, composition, fertility,
Module I	Population Size and Composition,		mortality, migration, and
Scope of	Measures of population size:	1	population aging.
demography	population counts, estimates, and	24	Learn to interpret and analyze
(15 Hours)	projections, Population composition:	1	demographic measures
(15 110013)	age structure, sex ratio, and		including birth rates, death
	demographic characteristics,		C I
	Interpretation of population pyramids		
	interpretation of population pyrainius		
	Futility Marganes of futility high		population pyramids.
	Fertility: Measures of fertility: birth		A a maine a martine in the
	rates, total fertility rates, age-specific	•	Acquire proficiency in
	fertility rates, Determinants of		identifying and utilizing
Module II	fertility: socioeconomic, cultural, and		various sources of
Measures of	policy factors, Trends and patterns in		demographic data, including
mortality and	fertility, Mortality: Measures of		censuses, surveys, and vital
fertility	mortality: death rates, life		registration systems.
(15 Hours)	expectancy, age-specific mortality	•	Learn data quality assessment
	rates, Causes of mortality: infectious		techniques and sampling
N.	diseases, chronic diseases, external		methods for demographic
A	causes, Epidemiological transition		research
/ \	theory		
<1/	Migration: Types of migration:	•	Develop skills in demographic
1	internal, international, refugee	2	analysis techniques, including
Module III	movements, Measures of migration:	/	standardization methods and
Theories of	net migration rates, migration flows,		demographic modeling
migration	migration stocks, Theories of		approaches such as cohort-
(15 Hours)	migration: push and pull factors,		component projection and
	network theory, migration systems		survival analysis.
	Population Aging, Concepts and	•	Apply statistical methods to
	measures of population aging,		analyze demographic trends

	Causes and consequences of and patterns, and interpret		
	population aging, Challenges and findings accurately.		
	opportunities of an aging population		
	Demographic Data Sources and		
	Methods; Sources of demographic • Explore historical trends in		
	data: censuses, surveys, vital population dynamics and		
Module IV	registration systems, Data quality understand the underlying		
Demographic	issues and sampling techniques causes and consequences of		
Analysis	Demographic Analysis Techniques demographic changes.		
Techniques	Standardization techniques, • Analyze contemporary		
	Demographic modeling: cohort- population trends, including		
(15 Hours)	component projection method, fertility, mortality, migration,		
	population momentum, Survival and population aging, and		
	analysis techniques for life tables and assess their implications for		
	mortality data, Population Policy and society.		
	Planning.		
	Text Book		
	1. Poston Jr, D. L., & Bouvier, L. F. (2010). Population and society: An		
	introduction to demography. Cambridge University Press.		
	2. Cox PR (1957). Demography. Cambridge University Press		
	Reference Book		
References	1. Croxton F E and Crowder D J (1967) Applied General statistics, Prentice		
- A.	- Hall India.		
	2.Bogue, Donald J: Principles of Demography, John Wiley and Sons, New		
<1/	York,1969		
1	3. Shrivastava O S: A Text Book of Demography with Economics of Man		
	Power Supply and Manpower Demand, Vikas, New Delhi, 1983		
Course	After successful completion of this course, student will be able to:		
Outcomes	1. Define and explain fundamental demographic concepts such as		
	population size, composition, fertility, mortality, migration, and		
	population aging.		
	2. Identify and utilize various sources of demographic data, including		
	censuses, surveys, and vital registration systems, and assess data quality.		

3. Apply demographic analysis techniques, including standardization
methods and demographic modeling approaches, to analyze population
dynamics and trends.
4. Interpret demographic measures and trends accurately, and assess their
implications for social, economic, and political contexts.

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage	
End Semester Evaluation(ESE)	60	
Continuous Ev	aluation	
Tests	16	
Assignment	08	
Seminar/Viva	16	
Total	40	

- 1. Define demography and explain its significance in the field of statistics.
 - 2. Describe the measures used to quantify population size and composition. How are these measures calculated?
 - 3. Discuss the factors influencing fertility rates and their variations across different populations.
 - 4. Compare and contrast crude birth rate, total fertility rate, and age-specific fertility rates. Provide examples illustrating their use.
 - 5. Explain the concept of the epidemiological transition and its implications for population health.

- 6. Discuss the main determinants of mortality rates and how they have changed over time.
- Describe the different types of migration and their impact on population dynamics. Provide examples of push and pull factors influencing migration.
- 8. Define population aging and discuss its causes and consequences for societies.
- 9. Explain the cohort-component projection method and its application in population forecasting.
- 10. Discuss the role of demography in informing public policy decisions related to healthcare, labor markets, and environmental planning.

Course Code & Title	MSBST04DSE21- ANALYSIS OF LONGITUDINAL DATA			
Programme	M.Sc. Biostatistics	.Sc. Biostatistics Semester IV		
Course	Master advanced statistical modeling	techniques for	r longitudinal	
Objectives	data.			
	• Develop proficiency in estimating mo	• Develop proficiency in estimating model parameters using		
	maximum likelihood (ML), restricted maximum likelihood			
	(REML).			
	• Gain a comprehensive understanding	• Gain a comprehensive understanding of missing data mechanisms		
	and strategies for handling missing values in longitudinal studies.			
5	• Learn to address challenges such as time-dependent covariates, intermittent missing values, and dropout processes in longitudinal			
- A.				
1	data analysis.			

POOL I: DISCIPLINE SPECIFIC ELECTIVE COURSE

V	WUR UNIVE	63
Modules	Content	Module Outcome
	General Linear Model for	• Explore maximum likelihood
Module I	Longitudinal Data. ML and	(ML) and restricted maximum
General Linear	REML estimation, EM algorithm:	likelihood (REML) estimation
Model for	General linear mixed-effects	methods.
Longitudinal	model, Inference for; the random	• Understand the expectation-

Data	effects, BLUPs, Empirical Bayes,	maximization (EM) algorithm.
(15 Hours)	Bayes, Shrinkage Model building	• Perform inference for random
Module II	and diagnostic, relaxing parametric assumptions: generalized additive mixed model. Generalized Linear Model for Longitudinal Data, Marginal models for binary ordinal and	• Extend the framework to handle generalized linear models (GLMs) for
Random effects models for binary and count data (15 Hours)	models, for binary, ordinal, and count data: Random effects models for binary and count data: Transition models: Likelihood- based models for categorical data; GEE; Models for mixed discrete and continuous responses.	 longitudinal data. Study marginal models for binary, ordinal, and count data, as well as random effects models. Explore transition models and likelihood-based approaches for categorical data
Module III Modeling the dropout process (15 Hours)	Classification missing data mechanism; Intermittent missing values and dropouts; Weighted estimating equations; Modeling the dropout process (Selection and pattern mixture models).	 Investigate classification of missing data mechanisms and strategies for addressing intermittent missing values and dropouts. Learn about weighted estimating equations and modeling the dropout process.
Module IV Multivariate longitudinal data (15 Hours)	Dangers of time dependent covariates, Lagged covariates; Marginal Structural models; Joint models for longitudinal and survival data; Multivariate longitudinal data; Design of randomized and observational longitudinal studies.	 Address challenges associated with time-dependent covariates and lagged covariates. Explore marginal structural models and joint models for longitudinal data. Discuss strategies for analyzing multivariate

125 | Scheme and Syllabus of M Sc. Biostatistics- 2023 Admission onwards- Kannur University

	longitudinal data.	
	Text books	
	1. Diggle, P. J., Heagerty, P., Liang, K. Yand Zeger.S. L (2003). Analysis	
	of Longitudinal Data, 2 nd Edn. Oxford University press, New York.	
-	2. Fitzmaurice, G.M., Laird, N.M and Ware, J.H. (2004). Applied	
	Longitudinal Analysis, John Wiley & Sons, New York.	
References	Reference Books	
	1. Crowder, M. J. and Hand, D. J. (1990). Analysis of Repeated	
	Measures. Chapman and Hall/CRC Press, London.	
	2. Davidian, M. and Giltinan, D. M. (1995). Nonlinear Models for	
Kelerences	Repeated Measurement Data. Chapmanand Hall/CRC Press, London.	
	3. Hand, D and Crowder, M. (1996). Practical Longitudinal Data	
	Analysis. Chapman and Hall/CRC Press, New York.	
	4. Little, R. J. A and Rubin, O. B.(2002). Statistical Analysis with	
	Missing Data, 2 nd Edition, Wiley, New York.	
	5. McCullagh, P. and Nelder. J. A. (1989). Generalized Linear Models.	
	2nd Edition, Chapman and Hall/CRC Press, London.	
	6. Weiss, R. E. (2005). Modeling Longitudinal Data. Springer, New York	
Course	After successful completion of this course, student will be able to:	
	1. Conduct analysis of longitudinal data.	
	2. Apply statistical techniques to model longitudinal data and	
	make predictions.	
Outcomes	3. Understand analysis of longitudinal data with missing data.	
1 de la constante de la consta	 Understand analysis of longitudinal data with time-dependent covariates. 	

• Lecturing, Visualization, Team Learning

MODE OF TRANSACTION

• Lecture, Seminar, Discussion, Questioning and Answering

ASSESSMENT RUBRICS

Components	Weightage
End Semester Evaluation(ESE)	60
Continuous E	valuation
Tests	16
Assignment	08
Seminar/Viva	16
Total	40

- 1. What distinguishes maximum likelihood (ML) from restricted maximum likelihood (REML) estimation in the context of longitudinal data analysis?
- 2. Explain the concept of the expectation-maximization (EM) algorithm and how it is utilized in fitting general linear mixed-effects models for longitudinal data.
- 3. How would you handle intermittent missing values in a longitudinal dataset? Describe the strategies and techniques you would employ.
- 4. Discuss the advantages and limitations of using generalized estimating equations (GEE) for analyzing longitudinal data compared to mixed-effects models.
- 5. What are the key differences between marginal models and random effects models for handling binary data in longitudinal studies?
- How do you assess the impact of time-dependent covariates on longitudinal outcomes?
 Describe the statistical methods used for this analysis.
- 7. Explain the concept of best linear unbiased predictions (BLUPs) and their relevance in estimating random effects in longitudinal models.
- 8. Describe the process of building a generalized additive mixed model (GAMM) for longitudinal data and discuss its advantages over parametric approaches.
- 9. What are selection models and pattern mixture models, and how are they used to address the issue of dropout in longitudinal studies?

10. Can you outline the steps involved in designing a longitudinal study, including considerations for handling missing data and analyzing multivariate longitudinal outcomes?

128