

(Abstract)

FYUG Plant Science Programme - Scheme (7-8 semesters) and Syllabus (4-8 semesters) - Approved and Implemented with effect from 2024 Admission - Orders Issued

ACADEMIC C SECTION

ACAD C/ACAD C3/21060/2024

Read:-1. U.O No.ACAD/FYSC -III /21060/2024 dated 17/11/2024

- 2. Minutes of the Online meeting of all Dean of Faculties held on 04.06.2025.
- 3.U.O No. ACAD C/ACAD C3/21060/2024 (I) Dated: 27.09.2025
- 4.E-mail from the Chairperson, Board of Studies in Botany (UG) dated 10.11.2025

Dated: 19.12.2025

- 5.E-mail from the Dean, Faculty of Science dated 17.11.2025
- 6.Minutes of the Meeting of the Standing Committee of the Academic Council, held on 05.12.2025
- 7. Orders of the Vice Chancellor in the file of even number dated 19.12.2025

ORDER

- 1.The Scheme (6 semesters) and Syllabus (First & Second Semesters only) of the FYUG B.Sc. Plant Science Programme was approved and implemented w. e. f 2024 Admission as per paper read (1) above.
- 2. The meeting of all Deans of faculties held online on 04.06.2025, vide paper read (2) recommended to approve the Third and Fourth semester Syllabus of the FYUG B.Sc. Plant Science Programme, submitted by the Chairperson, BoS in Botany (UG) and the same was approved by the Vice-Chancellor, exercising the powers of the Academic Council.
- 3. Third Semester Syllabus of the FYUG B.Sc. Plant Science Programme was implemented in affiliated colleges w.e.f 2024 admission as per paper read (3) above.
- 4.The Chairperson, Board of Studies in Botany (UG) vide paper read as (4) above, submitted the Scheme (7-8 semesters) and Syllabus (5-8 Semesters) of the FYUG B.Sc. Plant Science Programme for approval and implementation we fithe Academic year 2024.
- **5.The** submitted Scheme and Syllabus were forwarded to the Dean, Faculty of Science for verification and the Dean vide paper read as (5) above recommended to approve the same.
- 6. Considering the matter, the Vice Chancellor has ordered to place the Scheme (7-8 semesters) and Syllabus (5-8 Semesters) of the FYUG B.Sc. Plant Science Programme, submitted by the Chairperson, Board of Studies in Botany (UG), before the Standing Committee of the Academic Council for consideration.

7. The Standing Committee of the Academic Council, held on 05.12.2025, vide paper read as (6) above recommended to approve the Scheme (7-8 semesters) and Syllabus (5-8 Semesters) of the FYUG B.Sc. Plant Science Programme for implementation we fithe Academic year 2024.

8. The Vice Chancellor after considering the recommendation of the Standing Committee of the Academic Council and in exercise of the powers of the Academic Council conferred under Section 11(1) Chapter III of the Kannur University Act, 1996 and all other enabling provisions read together with has approved the Scheme (7-8 semesters) and Syllabus (5-8 Semesters) of the FYUG B.Sc. Plant Science Programme for implementation w.e.f 2024 admission, subject to

9.The approved Scheme and Syllabus are appended with this U.O. and uploaded in the University website.

Orders are issued accordingly.

reporting to the Academic Council.

Sd/-

Bindu K P G DEPUTY REGISTRAR (ACADEMIC)

For REGISTRAR

To:

- 1. The Controller of Examinations (through PA)
- 2. The Principals of Arts and Science Colleges affiliated to Kannur University

Copy To: 1. The Chairperson, Board of Studies in Botany (UG)

- 2. PS to VC/PA to R/PA TO CE
- 3. DR/AR (Academic)
- 4. JR/AR (Examination)
- 5.The IT Cell (For uploading in the website)
- 6. SF/DF/FC

Forwarded / By Order

SECTION OFFICER

KANNUR UNIVERSITY FYUGP SYLLABUS

B.Sc. PLANT SCIENCE

Effective from 2024 admissions

CONTENTS

Foreword	3
Preamble	4
Academic Competency	5
Vision and Mission of Kannur University	6
FYUGP BSc Botany Ad Hoc Committee	7
Board of Studies In UG Botany	8
Programme Outcomes	9-11
Programme Specific Outcomes of BSc Plant Science	12-13
Programme Pathway	14
Consolidated List of Courses and Credits required for BSc Plant Science	15
Semester Wise Credit Distribution of General Foundation Courses for BSc Plant Science	16
Details of Major Path Way Courses in B.Sc. Plant Science	17-19
Details of Minor Pathway Courses in Botany/Plant Science	20
Details of Foundation Courses in Botany/Plant Science	21
General Rules for Evaluation and Assessment	22-27
Syllabus	
Discipline Specific Major Courses	28-54
Discipline Specific Minor Courses	55-83
Foundation Level Courses	84-102

Foreword

The Four-Year Undergraduate Programme (FYUGP) in BSc Plant Science is undergoing rigorous transformations to better align with the evolving needs of students, industries, and society at large. Recognizing education as a cornerstone of progress, it's imperative that the curriculum reflects contemporary demands. This necessitates frequent and strategic updates to keep pace with societal and economic shifts.

In the current era, it is paramount that higher education equips students with robust, practical skills that are directly applicable to their chosen fields. Despite a surge in college enrollment, doubts persist regarding the adequacy of educational preparation for the workforce, particularly in terms of the competencies sought by employers.

As globalization intensifies and the world accelerates, educational institutions must adapt, instilling in students not only technical expertise but also critical thinking, communication prowess, and adaptability. These competencies are essential for thriving in the 21st century.

Moreover, there is an escalating expectation for colleges and universities to champion social responsibility and contribute to sustainable development through innovation. The government of Kerala is taking decisive actions to enhance higher education by establishing commissions to recommend comprehensive policy reforms, regulatory updates, and evaluation system overhauls.

Integral to these initiatives is the restructuring of the undergraduate curriculum, including the FYUGP in BSc Plant Science. This restructuring aims to forge a knowledge-driven society capable of spearheading sustainable development. These changes are designed to ensure that higher education remains relevant, effective, and advantageous for both students and society as a whole.

Chairperson, Board of Studies in UG Botany

Dr. K.P. Prasanth,

Associate Professor, Department of

Botany, Sree Narayana College, Kannur

Preamble

Welcome to the Four-Year Undergraduate Programme (FYUGP) in BSc Plant Science at Kannur University. This curriculum has been meticulously engineered to impart a profound understanding of plant science, arming students with the critical skills necessary to excel in today's demanding and ever-changing environment.

Plant science, the rigorous study of plants, is a field of immense and multifaceted significance, intersecting essential domains such as agriculture, medicine, ecology, and conservation. With the relentless pace of scientific and technological advancements, plant science continually evolves, offering both unprecedented opportunities and formidable challenges. Recent breakthroughs in genome editing, sustainable agriculture, and plant-microbe interactions are revolutionizing our understanding and capabilities in plant science.

Our syllabus is designed to merge deep theoretical knowledge with practical application, providing a robust education that readies students for both advanced academic research and professional careers. Through an intensive mix of classroom lectures, laboratory experiments, fieldwork, and research projects, students will delve into the intricate realms of plant biology.

At Kannur University, we are unwavering in our commitment to fostering an intellectually stimulating environment that promotes curiosity, critical thinking, and a fervor for discovery. We champion active participation, independent thought, and collaborative learning, ensuring our graduates emerge as confident and competent leaders ready to make significant contributions to society.

This syllabus embodies our relentless pursuit of academic excellence, innovation, and continuous improvement. We are dedicated to cultivating a profound appreciation for the natural world and instilling a deep sense of environmental stewardship in our students. Our goal is to shape future leaders who can tackle the pressing challenges facing our planet.

We extend our best wishes to all students embarking on this rigorous educational journey, confident that their time studying plant science at Kannur University will be enriching, rewarding, and transformative.

Academic Competency

In the dynamic field of BSc Plant Science at Kannur University, our graduate attributes bridge academic learning with practical botanical expertise. These attributes encompass a wide range of essential skills and qualities that students develop throughout their studies, ensuring they are well-prepared for real-world applications. Key attributes include critical thinking, enabling students to analyze and evaluate information effectively; problem-solving, fostering creative and practical solutions to botanical challenges; and professionalism, maintaining high standards in work and conduct. Leadership skills guide and inspire others, while teamwork emphasizes the importance of collaboration. Clear and effective communication is crucial for sharing ideas, and a deep understanding of botanical principles underpins all scientific endeavors. Kannur University is dedicated to nurturing these attributes in BSc Plant Science students, seamlessly integrating them into the curriculum. This commitment ensures that graduates are not only knowledgeable in plant science but also resilient, compassionate, and socially conscious leaders ready to excel in their careers and make meaningful contributions to society.

KANNUR UNIVERSITY VISION AND MISSION STATEMENTS

Vision

To establish a teaching, residential and affiliating University and to provide equitable and just access to quality higher education involving the generation, dissemination and a critical application of knowledge with special focus on the development of higher education in Kasargode and Kannur Revenue Districts and the Manandavady Taluk of Wayanad Revenue District.

Mission

- ➤ To produce and disseminate new knowledge and to find novel avenues forapplication of such knowledge.
- ➤ To adopt critical pedagogic practices which uphold scientific temper, theuncompromised spirit of enquiry and the right to dissent.
- ➤ To uphold democratic, multicultural, secular, environmental and gender sensitivevalues as the foundational principles of higher education and to cater to the modernnotions of equity, social justice and merit in all educational endeavors.
- ➤ To affiliate colleges and other institutions of higher learning and to monitor academic, ethical, administrative and infrastructural standards in such institutions.
- To build stronger community networks based on the values and principles of higher education and to ensure the region's intellectual integration with national vision and international standards.
- ➤ To associate with the local self-governing bodies and other statutory as well asnon-governmental organizations for continuing education and also for building public awareness on important social, cultural and other policy issues.

FYUGP BSc BOTANY AD HOC COMMITTE

- 1. Prof. S Sudheesh Dean, Faculty of Science, Kannur University
- 2. Dr. Harikrishnan E, (Convener) Assistant Professor of Botany Payyanur College, Edat 3.

Falilullahim Aslam K V., Assistant Professor, Department of Botany, Government Brennen College, Thalassery

- 4. Muhammed Haneef K A, Assistant Professor, Department of Botany. GovernmentBrennen College, Thalassery
- 5. Suvarnika V., Assistant Professor, Department of Botany, Government Brennen College, Thalassery
- 6. Dr. Biju P., Associate Professor, Department of Botany. Government College Kasaragod
- 7. Dr Josekutty EJ, Associate Professor, Department of Botany, Government College, Kasaragod
- 8. Dr Tomson Mani, Assistant Professor, Department of Botany, Government Brennen College, Thalassery
- 9. Dr. P.S Prakash, Associate Professor, Department of Botany. Government Brennen College, Thalassery
- 10. Dr. Gayatri. R. Nambiar, Asst. Professor, Dept. of Botany, Sir Syed Collage, Taliparamba
- 11. Dr Prajith PK, Assistant Professor, Department of Botany Nehru Arts and Science College Kanhangad
- 12. Dr. P Aparna, Assistant Professor, Department of Botany, Sree Narayana College Kannur
 - 13. Sruthi C.C, Assistant Professor of Plant Science PRNSS College, Mattannur
- 14. Resmi P Thomas, Assistant Professor, Department of Botany Nirmalagiri College, Kuthuparamba
- 15. Dr. Ratheesh Narayanan M.K., Assistant Professor, Department of Botany, Payyanur College, Edat
- 16. Dr.Tajo Abraham, Assistant Professor, Department of Botany, Sir Syed College, Taliparamba

BOARD OF STUDIES IN UG BOTANY

Chairperson

Dr. K.P. Prasanth, Associate Professor, Department of Botany, Sree Narayana College, Kannur

Members

- 1. Mr. Falilullahim Aslam K V, Assistant Professor, Department of Botany, Government Brennen College, Thalassery
- 2. Mr.Muhammed Haneef K.A, Assistant Professor, Department of Botany, GovernmentBrennen College, Thalassery,
- 3. Ms.Suvarnika V, Assistant Professor, Department of Botany, Government Brennen College, Thalassery
- 4. Ms. Deepa A V, Assistant Professor, Department of Botany, Government Brennen College, Thalassery
- 5. Dr. Biju P, Associate Professor, Department of Botany, Government College, Kasaragod
- 6. Dr. R.D. Anpin Raja, Assistant Professor, Department of Botany, Nirmalagiri College, Kuthuparamba
- 7. Dr. Jeeshna MV, Assistant Professor, Department of Botany, Sree Narayana College, Kannur
 - 8. Dr. Prajith PK, Assistant Professor, Department of Botany, NAS College, Kanhangad
- 9. Dr. Abdussalam A.K. Assistant Professor, Department of Botany, Sir Syed College, Taliparamba
- 10. Dr C. Pramod, Assistant Professor, Department of Botany, University of Calicut (Chairperson, PG Board)

PROGRAMME OUTCOMES

PO 1. CRITICAL THINKING

- 1. Evaluate information objectively to form well-founded judgments.
- 2. Draw logical conclusions from data, identifying essential details and discarding irrelevant ones for effective problem-solving or decision-making.
 - 3. Detect logical inconsistencies in others' arguments.
- 4. Analyze data, facts, observable events, and research findings to generate relevant andvalid conclusions specific to the field.

PO 2. COMPLEX PROBLEM SOLVING

- 1. Tackle various challenges in both known and new environments, applying knowledgeto practical situations.
 - 2. Analyze problems, develop and implement solutions, and assess their effectiveness.
 - 3. Evaluate the impact of solutions on people and the environment.

PO 3. CREATIVITY

- 1. Develop innovative content, theories, and methodologies.
- 2. Use diverse approaches to connect different concepts or events.
- 3. Provide new insights or improve existing ideas and solutions.
- 4. Generate, refine, and express new ideas with practical value or inherent significance.

PO 4. COMMUNICATION SKILLS

- 1. Clearly and effectively communicate ideas or emotions.
- 2. Use language precisely to convey messages.
- 3. Engage and captivate the audience skillfully.
- 4. Listen attentively, understand, and show empathy towards speakers.

5. Express opinions and thoughts with confidence and assertiveness.

PO 5. LEADERSHIP QUALITIES

- 1. Lead diverse teams effectively and respectfully.
- 2. Build team unity toward common goals.
- 3. Motivate and mentor individuals to achieve collective solutions.
- 4. Offer support and motivation during tough times, promoting resilience and bravery.

PO 6. MASTERING THE ART OF SKILL ACQUISITION

- 1. Acquire new knowledge and skills, like mastering the ability to learn continuously, through self-directed learning.
- 2. Independently find and access appropriate resources essential for ongoing learning pursuits.
- 3. Cultivate organizational skills and time management strategies to set personal goalsand deadlines.
 - 4. Cultivate a positive outlook to welcome lifelong learning.

PO 7. EMERGING TECHNOLOGICAL ABILITIES

- 1. Apply Information and Communication Technology in diverse learning and professional settings, accessing, evaluating, and utilizing various relevant information sources.
 - 2. Utilize appropriate software for data analysis purposes.
- 3. Understand the risks associated with the digital world and take precautions to ensure security.
- 4. Uphold constitutional, humanistic, ethical, and moral principles in life, embracing universal values such as truth, integrity, peace, compassion, nonviolence, scientific reasoning, and citizenship responsibilities.
- 5. Formulate a position or argument on an ethical issue by considering multiple perspectives.
 - 6. Identify ethical dilemmas in professional contexts, adhering to ethical standards by

avoiding unethical practices like data fabrication, falsification, plagiarism, and respecting intellectual property rights.

7. Employ impartial, objective, and truthful approaches in all professional endeavors.

PROGRAMME SPECIFIC OUTCOMES

Upon completing the program, graduates will discover a multitude of opportunities, armed with the expertise to excel in their selected field.

PSO 1

The curriculum provides students with a thorough grasp of plant diversity, encompassing topics such as structure, genetics, reproduction, ecology, and economic importance across diverse plant categories. (Programme Outcome Numbers1,6)

PSO 2

Students acquire a broad understanding of plant diversity, exploring the complexities of structure, function, reproduction, and life cycles within specific plant groups, igniting a profound curiosity to delve deeper into the world of plants. (Programme Outcome Numbers 1,2)

PSO 3

In the field of Plant Science, students delve into fundamental principles of Morphology, Taxonomy, Anatomy, Ecology, Physiology, Genetics, and Molecular Biology, while also exploring advanced subjects such as Plant Biotechnology, Molecular Plant Pathogen interactions, and Developmental Botany. (Programme Outcome Numbers 2,6)

PSO 4

Students encounter a wide array of professional pathways, ranging from Landscaping, Gardening, and Floriculture to Organic farming, Herbal technology, Mushroom cultivation, Ecotourism, and Forensic Botany, empowering them to emerge as future entrepreneurs in the field of Plant Science. (Programme Outcome Numbers 3,6,7)

PSO 5

Students develop proficiency in employing diverse analytical techniques and tools for both fundamental and practical research in plant biology, while also addressing intellectual and ethical aspects inherent in biological discoveries. (Programme Outcome Numbers 6,7)

PSO 6

Students acknowledge the essential role of the plant kingdom in human survival and cultivate skills for documenting, conserving, and sustainably managing plant resources in the face of climate change challenges. (Programme Outcome Numbers 6,7,8)

PSO 7

Involvement in project work and research activities encourages students to utilize interdisciplinary concepts, nurturing critical thinking, problem-solving skills, and creativity to innovate and generate new knowledge. (Programme Outcome Numbers 3,6,7)

PSO 8

Practical training across different fields nurtures hands-on skills, mastery in equipment operation, laboratory techniques, and the collection, analysis, and interpretation of biological data. (Programme Outcome Numbers 4,5,6)

PSO₉

Participating in laboratory work and field studies nurtures teamwork and leadership skills among students. Additionally, hands-on field experience provides a practical opportunity for mastering new skills. (Programme Outcome Numbers 5,6,7)

PSO 10

Completing assignments and presentations improves students' communication and ICT skills. Furthermore, coursework in Biostatistics and Bioinformatics offers hands-on experience with software and tools relevant to these areas of biology. (Programme Outcome Number 7)

PSO 11

The flexible curriculum enables instructors to incorporate inquiry-based learning activities, prompting students to inquire, investigate, and draw conclusions independently. This method fosters curiosity, encourages self-directed learning, and enhances understanding of scientific principles. Additionally, teacher-led debates and discussions on controversial scientific topics equip students with argumentation skills, enabling them to support claims with evidence and consider various viewpoints. (Programme Outcome Numbers 5,6,8)

PSO 12

Inspire a lifelong love for learning and professional growth by motivating students to stay abreast of developments in the field of botany, engage in continuing education initiatives, and pursue further studies or certifications when necessary. (Programme Outcome Numbers 4,5,7)

PROGRAMME PATHWAYS WITH PLANT SCIENCE

SI	Name of the	Minimum
No	Pathway	Requirements
1.	BSc Degree with	For the THREE YEAR PROGRAMME
	Single Major in Plant Science	A minimum of 68 credits from 17 courses and out of these 10 courses above should be above level 300.
		2 credits of internship in Plant Science and 24 credits from any 6 disciplines other than the major discipline.
		For the FOUR YEAR PROGRAMME students should earn a further 32 credits in Plant Science from advance level courses and project and an additional 12 credits from any discipline.
2.	BSc. Degree Major in Plant Science with Minor	A minimum of 24 credits in the minor discipline by the end of Third year and 32 credits by the end of Fourth year in any discipline along with major in Plant Science
3.	BSc Degree Major in Plant Science with Multiple Disciplines	Along with the criteria 4 major discipline in Plant Science, 68 credits from 17 courses along with 12 credits from 3 courses belonging to a maximum of two other disciplines with a total of 24 credits. In the Fourth-year students need to earn an additional 12 credits from any 3 disciplines with a total of 36 credits.
4.	BSc Degree with Plant Science and any other discipline as Major	There is a minimum requirement of 50 percentage credits in Plant Science and a minimum 40 percentage credits from any other disciplines. Students should earn a minimum of 68 credits in Plant Science and 53 credits from another discipline. The double major pathway is not extended to the Fourth year. In the fourth year the required credits from Plant Science or any other major discipline.
5	BSc Degree Major in Plant Science with Vocational Minor	68 credits from 17 courses in Plant Science and in the fourth year they should earn 32 credits in Vocational Minor discipline to get a UG Honours degree with a Vocational Minor
6.	Multidisciplinary UG Programme	The overall fraction of credits should be 70 percentage in the major and minor disciplines. A minimum of 94 credits is required for the Third year programme and a minimum of 124 credits including the project for the Four Year Programme

7.	Inter disciplinary	For a Third Year Programme 94 credits from the constituent discipline and
	UG Programme	for a Four Year Programme124 credits including Project are required.

CONSOLIDATED LIST OF COURSES AND CREDITS REQUIRED FOR BSc BOTANY AND PLANT SCIENCE

BSc BOTANY AND PLANT SCIENCE										
Sl. No.	Course Category	3 yea	ar UG	4 Year UG						
		Minimum no.	Minimum No.	Minimum no.	Minimum No.					
		of Courses	of Credits	of Courses	of Credits					
		required	required	required	required					
1	Major	17	68	22	88					
2	Minor (for those with	6	24	8	32					
	minor pathway)									
3	MDC	3	9	3	9					
4	SEC	3	9	3	9					
5	VAC	3	9	3	9					
6	AEC	4	12	4	12					
7	Internship		2		2					
8*	Research project of 12				12					
(only one	credits- Mandatory for									
type of	Honours with research									
course	Project of 12 credits -				12					
from	optional for Honours									
these 4	Project of 8 credits +				8 + 4					
divisions)	one major course									
	(honours)									
	Three major Courses				12					
	instead of optional									
	project									
9	An additional Course			1	4					
	in major/minor/any									
	other discipline									
	TOTAL	36	133	47	177					

SL No.	Name of the GFC	No. of Courses	Required credits	Distribution	UNDATION COURSES FOR BSc PLANT SCIEN among Semesters and Disciplines (*Shelist given in the GFC courses of Plant Science)
				Sem 1	AEC 1(English) and AEC 2 (Hindi/ Malayalam/ Sanskr Kannada/ Urdu/ Arabic, etc.)
1	AEC	4	12	Sem 2	AEC 3 (English) and AEC 4 (Hindi/ Malayalam/ Sanskr Kannada/ Urdu/ Arabic, etc.)
				Sem 1	MDC 1
2	MDC	3	9	Sem 2	MDC 2
2				Sem 3	MDC 3*
				Sem 3	VAC 1 *
3	VAC	3	9	Sem 4	VAC 2* and VAC 3
				Sem 4	SEC 1*
4	AEC	3	9	Sem 5	SEC 2
				Sem 6	SEC 3
	Total	13	39		
					SEC 3 SEC 3 Management, Tissue culture and Plant pro

	DE	TAILS O	F MAJOR PATH WAY (COURSES II	N B.Sc. Pl	ANT SC	IENCE		
SI.					THEO	RY	PRACTIO	CAL	
No.	Course Code	Sem	Name of the course	Credit	ESE	CCA	ESE	CCA	TOTAL
			FIRST	YEAR					
Seme	ester 1								
1	KU1DSCPLS101	1	Cell: Structure and Reproduction	3 +1	50	25	15	10	100
Seme	ster 2		•	•					
2	KU2DSCPLS102	2	Angiosperm Anatomy, Embryology and	3+ 1	50	25	15	10	100
	KUZDSCPLS10Z		Palynology	D YEAR	50	25	12	10	100
•			SECON	DTEAR					
Seme	ester 3		D: 1 (A)	<u> </u>			1		
3	KU3DSCPLS201	3	Diversity of Algae and Bryophytes	3 + 1	50	25	15	10	100
4	KU3DSCPLS202	3	Angiosperm Systematics I	4	70	30	0	0	100
Seme	ester 4								
5	KU4DSCPLS203	4	Diversity of Pteridophytes and	3 + 1	50	25	15	10	100
			Gymnosperms						
6	KU4DSCPLS204	4	Angiosperm Systematics II	3+1	50	25	15	10	100
7	KU4DSCPLS205	4	Genetics	3+ 1	50	25	15	10	100

DETAILS OF MAJOR PATH WAY COURSES IN B.Sc. PLANT SCIENCE

SI.					THEC	RY	PRACT	ICAL	
No.	Course Code	Sem	Name of the course	Credit	ESE	CCA	ESE	CCA	TOTAL
		1		D YEAR	I		1		
Seme	ester 5								
8	KU5DSCPLS301	5	Mycology and Plant Pathology	3+ 1	50	25	15	10	100
9	KU5DSCPLS302	5	Bio-instrumentation and Computers	4	70	30	0	0	100
10	KU5DSCPLS303	5	Basics in Molecular biology and Genetics	4	70	30	0	0	100
11	KU5DSCPLS304	5	Phytochemistry	3+ 1	50	25	15	10	100
12	KU5DSEPLS305	5	Plantation Management	4	70	30	0	0	100
13	KU5DSEPLS306	5	Stress Physiology	4	70	30	0	0	100
14	KU5DSEPLS307	5	Weed Ecology	4	70	30	0	0	100
15	KU5DSEPLS308	5	Seed Technology	4	70	30	0	0	100
Seme	ester 6								r
16	KU6DSCPLS309	6	Biotechnology and Basic Bioinformatics	3 + 1	50	25	15	10	100
17	KU6DSCPLS310	6	Research Methodology and Biostatistics	4	70	30	0	0	100
18	KU6DSCPLS311	6	Phytophysiology	3+ 1	50	25	15	10	100
19	KU6DSCPLS312	6	Evolution and Plant Breeding	4	70	30	0	0	100
20	KU6DSCPLS313	6	Plant Ecology and Phytogeography	3+ 1	50	25	15	10	100
21	KU5DSEPLS314	6	Floriculture and Olericulture	4	70	30	0	0	100
22	KU5DSEPLS315	6	Agroecology	4	70	30	0	0	100
23	KU5DSEPLS316	6	Ethnobotany	4	70	30	0	0	100
24	KU5DSEPLS317	6	Pharmacognosy and Phytochemistry	4	70	30	0	0	100
25	KU6INTPLS318	6	Internship/apprenticeship/ Field trip/ Nature Camp	2	35	15	0	0	50

DETAILS OF MAJOR PATH WAY COURSES IN B.Sc. PLANT SCIENCE

SI.					THEC	RY	PRACTIO	CAL			
No.	Course Code	Sem	Name of the course	Credit	ESE	CCA	ESE	CCA	TOTAL		
	FOURTH YEAR										
Seme	ster 7		T	I		T	1	ı			
			Advanced course in Plant								
26	KU7DSCPLS401	7	Developmental Biology	4	70	30	0	0	100		
			Advanced course in								
27	KU7DSCPLS402	7	Cryptogamic Diversity	3+ 1	50	25	15	10	100		
			Advanced course in								
28	KU7DSCPLS403	7	Diversity of Phanerogams	3+ 1	50	25	15	10	100		
29	KU7DSCPLS404	7	Advanced course in Mycology, Microbiology and Plant pathology	4	70	10	0	20	100		
30	KU7DSCPLS405	7	Modern tools and Techniques for Ecological Studies	4	70	10	0	20	100		
Seme		,	Studies	7	70	10			100		
31	KU8DSCPLS406	8	Advanced Bioinformatics Phytogeography of North	3+ 1	50	25	15	10	100		
32	KU8DSCPLS407	8	Kerala	4	70	30	0	0	100		
33	KU8DSCPLS408	8	Applications of Botany in Industries - North Kerala	3+ 1	50	25	15	10	100		
34	KU8DSEPLS409	8	Advanced course in Angiosperm Systematics	4	70	30	0	0	100		
35	KU8DSEPLS410	8	Plant Microtechnique	4	70	30	0	0	100		
36	KU8DSEPLS411	8	Nanobiotechnology	4	70	30	0	0	100		
37	KU8DSEPLS412	8	Climate change and Disaster Management	4	70	30	0	0	100		
38	KU8DSEPLS413	8	Environmental Impact Assessment and Conservation Management	4	70	30	0	0	100		
39	KU8DSEPLS414	8	Structural biology	4	70	30	0	0	100		
			Project (A project of 8 credits +1 Major course or 3 Major courses instead of optional project. The scheme of evaluation of the project of 8 credits will								
40	KU8PRJPLS415	8	140 +60 = 200)	12	210	90		0	300		

DETAILS OF MAJOR PATH WAY COURSES IN B.Sc. PLANT SCIENCE

DETAILS OF MINOR PATHWAY COURSES IN BOTANY / PLANT SCIENCE

SI.					THEO	THEORY		ICAL	
No.	Course Code	Sem	Name of the course	Credit	ESE	CCA	ESE	CCA	TOTAL
Seme	ester 1						I		
41	KU1DSCBOT103	1	Diversity of Plants I	3 + 1	50	25	15	10	100
42	KU1DSCBOT104	1	Plant Ecology and Phytogeography	3+ 1	50	25	15	10	100
Semo	ester 2								
43	KU2DSCBOT105	2	Reproduction and Life Cycle of Plants	3+ 1	50	25	15	10	100
44	KU2DSCBOT106	2	Angiosperm Taxonomy and Morphology	3+1	50	25	15	10	100
Semo	ester 3	•				,			
45	KU3DSCBOT206	3	Diversity of plants II	3+ 1	50	25	15	10	100
46	KU3DSCBOT207	3	Angiosperm Anatomy and Embryology	3+ 1	50	25	15	10	100
47	KU3DSCBOT208	3	Forest Botany	3+1	50	25	15	10	100
Semo	ester 6								
48	KU6DSCBOT321	6	Mycology, Phytopathology and Applied Botany	3+ 1	50	25	15	10	100
49	KU6DSCBOT322	6	Evolution of Plants and Animals	4	70	30	0	0	100
50	KU6DSCBOT323	6	Plantation Management	3+ 1	50	25	15	10	100
51	KU6DSCBOT324	6	Forest Botany	3+ 1	50	25	15	10	100
52	KU6DSCBOT325	6	Ethnobotany	3+ 1	50	25	15	10	100
53	KU6DSCBOT326	6	Herbal Science	3+ 1	50	25	15	10	100
54	KU6DSCBOT327	6	Modern Plant Pathology	3+ 1	50	25	15	10	100
55	KU6DSCBOT328	6	Horticulture	3+ 1	50	25	15	10	100
56	KU6DSCBOT329	6	Agronomy and Agroforestry	3+ 1	50	25	15	10	100

DETAILS OF FOUNDATION COURSES IN BOTANY / PLANT SCIENCE

SI.					THEC	RY	PRACTI	CAL	
No.	Course Code	Sem	Name of the course	credit	ESE	CCA	ESE	CCA	TOTAL
1	KU1MDCBOT101	1	Plant diversity	3	50	25	0	0	75
2	KU1MDCBOT102	1	Botany for the Beginners	3	50	25	0	0	75
		_	Beginner's exploration to the					_	
3	KU2MDCBOT103	2	world of leaves and flowers	3	50	25	0	0	75
4	KU2MDCBOT104	2	Agrobiodiversity	3	50	25	0	0	75
5	KU3MDCBOT105	3	Botanical Art	3	50	25	0	0	75
6	KU3MDCBOT106	3	Introductory course on Applications of Botany	3	50	25	0	0	75
		3	Microscopy and visualisation tools						
7	KU3MDCBOT107		in Biology	3	50	25	0	0	75
8	KU4SECBOT108	4	Biodiversity of Kerala and Ecotourism	3	50	25	0	0	75
9	KU4SECBOT109	4	Floral art Business	3	50	25	0	0	75
10	KU4SECBOT110	4	Entrepreneurship in Botany	3	50	25	0	0	75
11	KU4SECBOT111	4	Gardening Indoor and Outdoor	3	50	25	0	0	75
12	KU4SECBOT111	4	Medicinal Plants of Kerala	3	50	25	0	0	75
12	KU43LCBUTTI2	4	Mushroom Cultivation and	3	30	23	- 0	-	/3
13	KU4SECBOT113		Marketing	3	50	25	0	0	75
		4	Plant Tissue culture Lab set up for						
14	KU4SECBOT114		commercial Production	3	50	25	0	0	75
		5	Basics of Anthurium and Orchid						
15	KU5SECBOT115		Cultivation	3	50	25	0	0	75
		5	Mangrove and Laterite Hill						
16	KU5SECBOT116		Ecology for Tourism	3	50	25	0	0	75
17	KU5SECBOT117	5	Plantation Crop Nursery Setup	3	50	25	0	0	75
18	KU5SECBOT117	5	Management Hydroponics and Aquaponics	3	50	25	0	0	75
19	KU5SECBOT119	5	Plant Propagation Methods	3	50	25	0	0	75
20	KU3VACBOT120	3	Gender: A Biological perspective	3	50	25	0	0	75
21	KU3VACBOT121	3	Sustainable Life style	3	50	25	0	0	75
22	KU3VACBOT122	3	Conservation Biology	3	50	25	0	0	75
23	KU4VACBOT123	4	Basics of Environmental Science	3	50	25	0	0	75
		4	Climate Change and Disaster						
24	KU4VACBOT124	-	Management	3	50	25	0	0	75
25	KU4VACBOT125	4	Entrepreneurship in Compost Making	3	50	25	0	0	75
26	KU4VACBOT126	4	Biofertiliser and marketing	3	50	25	0	0	75
27	KU6VACBOT127	6	Agribased Microenterprises	3	50	25	0	0	75
		6	Indigenous plants: their						
28	KU6VACBOT128		Identification and utility	3	50	25	0	0	75
29	KU6VACBOT129	6	Wetland and Laterite Hill Ecology	3	50	25	0	0	75
30	KU6VACBOT130	6	Apiculture	3	50	25	0	0	75

GENERAL RULES

LIGIBILITY FOR ADMISSION AND SELECTION OF COURSES

Admission, enrollment, registration, options for changing major programs, selection of academic pathways, readmission and scheme migration, assessment and evaluation, and final grading and awarding of degrees are based on the Kannur University FYUGP Regulations and Curriculum Framework 2024, as well as the norms and rules established by the Government and the University from time to time.

Students must have completed the examination conducted by a recognized Board or University at the +2 level of schooling or its equivalent.

Departments will provide information on the courses they offer, including the eligibility criteria.

At the end of the second semester, students may be permitted to change their major program of study. Based on the availability of seats and infrastructure facilities, students may opt for any discipline they studied during the first two semesters as discipline-specific foundation courses or multidisciplinary foundation courses. If a student switches their major to a discipline in which an MDC has been completed, they will have to undertake additional DSC courses in the new discipline to acquire the required minimum credits.

One course should be offered by a faculty member whenever possible. The faculty member shall inform the students about the outcomes, course plan, and assessment methods at the beginning of the course.

Module 5 of each course is designated as 'Teach Space'—a personal, flexible, and dynamic area for teaching activities tailored to the needs of the instructor, infrastructure, course outcome, and the requirements of the students.

Students are advised to select a variety of courses from the available options instead of choosing courses with similar content. Some professional courses and jobs require a Botany/Plant Science major along with minors in Chemistry and Zoology. Therefore, students should carefully consider their selection of major and minor courses.

SWAYAM, MOOC, or other online courses can be selected from the course offerings of Indian universities and institutes. These courses must be related to the student's major and can be used to earn credits. Students can opt for SWAYAM and other online courses to earn credits, provided they complete an internal viva, give a presentation, and submit a report on the course.

JGGESTED PEDAGOGY AND EVALUATION

Page 27	GGESTED P	PEDAGOGY AND EVALUA	TION
25 Weach	ing-Learning		
:MIC) on 19-Dec-20	The FYL outcomes in ea earning and tra framework of 2	ch course, various methods of teaching, nsfer follow the guidelines of the Kannui	ed Education (OBE). To achieve the desired learning, and evaluation are employed. Credit University FYUGP regulations and curriculum
DE		Types of Teaching and Learn	
Ş	Types of Course	Teacher Activity	Student Activity
EGISTRAR (A	Theory	Lectures, demonstrations, presentations, discussions, and debates	Review of literature, assignments, presentations, e-learning, discussions, and debates with peers, teachers, and experts.
oved by DEPUTY R	Practical	Demonstrations, experimentation, field visits, and certification	Identification, comparison, differentiation, and categorization of different plants and their parts using permanent slides and hand sectioning. Additionally, demonstration, experimentation, field visits, report writing, and record keeping
3/21060/2024 Appro	Field Study/Study Tour	For plant diversity and technological studies, experiential learning should complement theoretical learning. Faculty members guide this flexible activity, determining the field for the trip.	Students should observe the features from the field and document peculiarities and diversity in a report.
iversity Order of File ACAD C/ACAD C	aspects of thei semester. The campus, potent approval, and a completion of the Suggeste botany/ecology or relevant ind	r learning and enhance employability. Internship must last a minimum of 60 violation tially consisting of 1-3 accumulated act an attendance certificate must be submit he internship. ed Internships: Summer internships at be agriculture, field trips to various ecosystem.	in the six semesters to engage with practical A report is required by the end of the sixth working hours and can be on-campus or off-tivities. Off-campus internships require prior tted to the HoD upon rejoining. HoDs ensure siology institutes or local industries related to ems or nature camps, apprenticeships in NGOs es such as river restoration, PBR preparation,
同談の数	생		

Internship

Student Responsibilities: Selecting the internship topic/activity, discussing with a mentor, planning and execution, and preparing and presenting the report.

Teacher/Supervising Guide Responsibilities: Confirming the topic/activity, providing guidance, and correcting and certifying the prepared report.

In the eighth semester, a mandatory 12-credit project (minimum 360 working hours) is required for FYUGP research or honors, or an optional 8-credit project (minimum 240 working hours) alongside a major theory course. Project guidance can be provided by a faculty member of the department. If necessary, the expertise of an external guide may be utilized. Facilities and expertise for the project can be on-campus or off-campus, with required permissions for off-campus projects. Students must maintain and submit a project log book/register along with the final report.

Student Responsibilities: Suggesting the topic, discussing with the project guide and peers, reviewing literature, planning and designing the project, experimentation, data analysis, and preparing and presenting the project report.

Teacher/Supervising Guide Responsibilities: Confirming the topic, demonstrating, planning experimentation, providing guidance, and correcting and certifying the project.

Each student should go through the evaluation process in an indirect grading method, as per the Kannur University FYUGP- regulations and curriculum frame work.- 2024. The evaluation for the odd semesters and the practical components will be done by the college itself and that for even semesters will be conducted at the university level.

Regarding evaluation, one-credit courses will be assessed for 25 marks, two-credit courses for 50 marks, three-credit courses for 75 marks, and four-credit courses for 100 marks. A copy of all records of evaluation shall be maintained in the department/college and should be available for verification by the university/BoS / the student.

EVALUATION	WEIGHTAGE
END SEMESTER EVALUATION- ESE	70
CONTINUOUS COMPREHENSIVE ASSESSMENT - CCA	30

The CCA component has two parts Formative Assessment (FA) and Summative Assessment (SA) with an equal weightage. The components of Evaluation will be determined by the instructor/faculty and the same will be communicated to the student at the beginning of the course.

Formative assessment (FA)

Formative assessment method quizzes, interviews, presentations, cl Formative assessment methods may include assignments (both theory and practical), viva voce, quizzes, interviews, presentations, classroom discussions, observation of practical skills, and self and

peer assessments. The course coordinator or faculty member will determine the combination of these

tools and their respective weightages and will communicate this information to the students at the beginning of the course.

SA methods may include written tests, open-book tests, laboratory records or reports, project reports, and case study reports. The coordinator can decide on the combination and relative weightage of these tools, which should be communicated to the students at the beginning of each course.

End Semester Examinations will be held in October for odd semesters and in March for even semesters. A 3-credit theory course will be evaluated with a 50-mark question paper, with a duration of 1.5 hours. A 4-credit theory course will be evaluated with a 70-mark question paper, with a duration

A copy of all records of evaluation shall be maintained by course in charge or the faculty for

Students must attend the practical classes and go through the continuous evaluation process for the course. Only those who have completed the continuous evaluation will be permitted to appear for the end-semester (practical) viva-voce. A copy of all records of evaluation shall be maintained by course in charge or the faculty for verification by the HoD / the student.

tools and their respective words beginning of the course.

Beginning of the course.

SA methods may include writt reports, and case study reports. The c of these tools, which should be commediate theory courses.

End Semester Examinations verification of Theory Courses and 2 hours.

A copy of all records of evaluation of Practical Courses

Students must attend the protection of the end-semester (practical) viva-vc in charge or the faculty for verificat conducted by the course in-charge Continuous Comprehensive Assess charge. For courses with both thece evaluation of practical courses shall examination.

END SEN

CONTINUOUS CC

Internship

The components of inte participation, the quality of the incomponents are the viva voce example incomponents incomponents are the viva voce example incomponents inc The end-semester practical examination, viva-voce, and evaluation of practical records shall be conducted by the course in-charge and an internal examiner appointed by the Department Council. The Continuous Comprehensive Assessment (CCA) of practical courses shall be conducted by the course incharge. For courses with both theory and practical components, the CCA components: The continuous evaluation of practical courses shall be completed at least 10 days before the start of the end-semester

EVALUATION	WEIGHTAGE
END SEMESTER EVALUATION- ESE	60
CONTINUOUS COMPREHENSIVE ASSESSMENT - CCA	40

The components of internship evaluation include performance evaluation, attendance and participation, the quality of the internship report, and the effectiveness of the presentation. Additional components are the viva voce examination, feedback from the internship site, self-assessment, and, if applicable, peer assessment. Continuous Comprehensive Assessment (CCA) will be conducted by the

faculty in charge, while the End Semester Examination will be evaluated by the Department Council, excluding the faculty in charge.

Components of Evaluation of Internship			Weightage Marks	Marks for Internship 2 Credit/50
Continuous	Comprehensive	Assessment	30%	15
(CCA)				(Report 5, Viva 5, Presentation 5)
End Semester	Evaluation (ESE)		70%	35

Evaluation of Project

A student pursuing UG Honours with research must complete a mandatory research project worth 12 credits by the end of the eighth semester. For other UG Honours students, the project is optional. Since each credit corresponds to 25 marks, the 12-credit project will be evaluated for a total of 300 marks. The evaluation scheme for the project is detailed below:

Project type	Maximum Marks	CCA (30%)	ESE (70%)
Research	300	90	210
Project of 12		Pre synopsis presentation and	Report, Methodology, Social Relevance,
Credits		viva	Scientific accuracy, innovation, data
		Review of literature	analysis, presentation skill ,viva
		Regularity and Participation	(components and their relative weightage
		(1:1:1)	can be decided by the department council)
Research	200	60	140
Project of 8		Pre synopsis presentation and	Report, Methodology, Social Relevance,
Credits		viva	Scientific accuracy, innovation, data
		Review of literature	analysis, presentation skill ,viva
		Regularity and Participation	(components and their relative weightage
		(1:1:1)	can be decided by the department council)

^{*}The question paper design and model question papers will be added later

Grading

Marks obtained in each component or question of a course are converted into a 10-point indirect grading system. The Semester Grade Point Average (SGPA) is calculated from these grades to evaluate student performance each semester. The Cumulative Grade Point Average (CGPA) and the corresponding grading scale are outlined below.

SI. No	Percentage of Marks (ESE and CCA put together)	Description	Letter Grade	Grade Point (P)	Range of Grade Points
1	95% and above	Outstanding	0	10	9.50 – 10
2	Above 85% and below 95 %	Excellent	A+	9	8.50 – 9.49
3	Above 75% to below 85%	Very Good	Α	8	7.50 – 8.49
4	Above 65% to below 75%	Good	B+	7	6.50 – 7.49
5	Above 55% to below 65%	Above Average	В	6	5.50 – 6.49
6	Above 45% to below 55%	Average	С	5	4.50 – 5.49
7	Above 35% to below 45% (CCA and ESE put together) with a minimum of 30% in ESE.	Pass	Р	4	3.50 – 4.49
8	Below an aggregate of 35% or below 30% in ESE	Fail	F	0	0 – 3.49
9	Not attending the examination	Absent	Ab	0	0

1	CELL: STRUCTURE AND REPRODUCTION	KU1DSCPLS101
Semeste Hrs/we	er : I ek : 3 Theory + 1 Practical	Credits : 4

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes								
CO1	Knowledge in the basic structural and functional unit of life, the cell.								
CO2	Understanding of the cell biology related terms used in the description of diverse forms of life.								
CO3	Understanding the basic differences in cell structure and cell reproduction that exist in various plant groups.								
CO4	Ability to apply the concepts gathered in the field of evolution and diversity studies.								
CO5	Firsthand experience in viewing cells under microscope and there by induction of enthusiasm in biological studies.								

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V	V	V									
CO2			V		V							
CO3					$\sqrt{}$				$\sqrt{}$			
CO4							$\sqrt{}$		V			
CO5											$\sqrt{}$	$\sqrt{}$

Course Description

This is an introductory biology course designed for UG students in general and BSc Botany and Plant Science in particular. The aim of the course is to give basic knowledge about the structure and function of cells and cellular components with historical and evolutionary perspectives.

- First module gives the brief history of the development of cell biology and evolution of cells.
- Second module gives an account on the cellular envelopes and nucleus.
- Third module is packed with endo-membrane system and other cellular organelles.
- Fourth module will give you in-depth knowledge on cell cycle and division, different phases of Mitosis and Meiosis.

This course will also provide you opportunities to observe diverse cells and hands-on training to identify stages of mitosis and meiosis during laboratory sessions.

Course Objectives:

- 1. To gather knowledge on evolution of cell biology as a discipline.
- 2. To understand the diversity in structure and function of cells and cell components.
- 3. To understand the stages of cell reproduction- mitosis and meiosis as well as the significance of these processes in sustenance and evolution of species.
- 4. To get hands on training in observing various types of cells under microscope.

	Credit		Teaching H	ours	A	ssessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3+0+2	5	35	65	100
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)	

COURSE CONTENT

Module 1. INTRODUCTION TO CYTOLOGY (5 hrs)

- 1.1. History History of the progress of cell biology and development of cell theory.
- 1.2. Cell as a unit of structure and function. Levels of organization of cells up to organism.
- 1.3. Origin and Evolution of cell. Characteristics of prokaryotic and eukaryotic cells.
- 1.4. Modern concept on cell components- Cellular envelopes, Protoplasm, Cell organelles, Cytoplasm, Non living inclusions.

Module 2. CELLULAR ENVOLOPE AND NUCLUEUS (10 hrs)

- 2.1. Cellular envelopes-Types and functions
- 2.2. Cell wall Chemistry, Ultra structure and function of Plant cell wall. Thickening of cell wall, Pits and pit apertures, Plasmodesmata. Cytoplasm- Physical, chemical and biological properties.
- 2.3. Cell membrane Overview of fluid mosaic model; Chemical composition of membranes; membrane function.
- 2.4. Nucleus Ultra structure of the interphase nucleus, The nuclear envelope; Nuclear pore complex, Nucleolus Structure and functions.

Module 3. CELL ORGANELLES (15 hrs)

- 3.1. Endomembrane system Endoplasmic Reticulum; Golgi Apparatus; Lysosomes. Vacuole. Phagocytosis and Pinocytosis and Membrane transport
- 3.2. Plastids Types of plastids. Structure and function of Chloroplast and Mitochondria. Significance of Mitochondria and Chloroplast in evolutionary biology and molecular taxonomy. Endosymbiotic Theory.
- 3.3. Microbodies- Structure and functions of Peroxisomes, Glyoxysomes and Ribosomes.
- 3.4. Cytoskeleton: Role and structure of microtubules, microfilaments and intermediary

filament. Major nonliving inclusions in the plant cell.

Module 4. CELL CYCLE AND CELL REPRODUCTION (15 hrs)

- 4.1. Concept of cell Cycle: Phases of eukaryotic cell cycle -Interphase and Mitotic Phase.
- 4.2. Mitosis: Karyokinesis and Cytokinesis. Different Stages in Karyokinesis Prophase, Metaphase, Anaphase and Telophase. Significance of mitosis. Cytokinesis Cytoplasmic division in Plant cell. Types of mitosis.
- 4.3. Meiosis: Stages of Meiosis I and II- both karyokinesis and cytokinesis. Variations among plants. Significance of Meiosis.
- 4.4. Comparative account of Mitosis and Meiosis among different organisms- Gametic meiosis and Zygotic meiosis.

Module 5. Teach Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Compound microscope and its parts.
- 2. Study of plant cell structure with the help of epidermal peel mount of Onion/*Crinum*/*Rheo*.
- 3. Diversity of cells- prokaryotic (blue green alga), eukaryotic (*Chlorella*, *Spirogyra*, stomata of different leaves, Trichomes).
- 4. Demonstration of the phenomenon of protoplasmic streaming in *Hydrilla* leaf, *Vallisnaria*.
- 5. Mitosis using Onion root smear.
- 6. Demonstration of staining of organelles/ animal/ plant/ microbial cells for light microscopic observation
- 7. Demonstration of meiosis using flower buds or any other suitable specimen.
- 8. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics

- 1. Geological time scale
- 2. Theories and experiments on evolution of life-classical and modern
- 3. Types of models of plasma membrane
- 4. Significance and applications of membrane studies in immunology, medicine, drug designing etc.
- 5. Meiotic errors and syndromes in human beings and plants
- 6. Evolution of crop plants and significance of meiosis and mitosis.

Sugg	Suggested readings specific to the module.							
Sl.	Title/Author/Publishers of the Book specific to the module							
No	-							
1	Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. The World of	1, 2, 3,4						

	the Cell. 7 th edition. Pearson Benjamin Cummings Publishing, San		
	Francisco, 2009		
2	Cooper, G.M. and Hausman, R.E. The Cell: A Molecular Approach. 5 th	1, 2, 3, 4	
	edition. ASM Press &Sunderland, Washington, D.C.; Sinauer Associates,		
	MA.,2009		
3	De Robertis E.D. and De Robertis E.M.F. Cell and Molecular Biology 8 th	1, 4	
	Edition. Lee and Fab International edition, Philadelphia.2017.		
4	Pawar, Cell Biology, Himalaya Publishing House, Mumbai. 2019.	1, 2,3, 4	
5	Rastogi, S.C. Cell and Molecular Biology. New Age International	1, 2, 3, 4	
	Publishers, New Delhi. 2016		
6	Verma P.S. and Agarwal V.K. Cell Biology (Cytology, Biomolecules,	2, 4	
	Molecular biology), Paper back, S.chand and Company .Ltd. 2016.		
Core	e Compulsory Readings		
1	Karp, G. (2010), Cell Biology, John Wiley & Sons, U.S.A. 6 th edition.		
2	Lodish, H. Berk A, Zipursky SL, et al., 2000: Molecular Cell Biology, 4th ed	ition., W.H.	
	Freeman, New York.		
Core	e Suggested Readings		
1	http://ndl.iitkgp.ac.in/document/eXF1YzdhQ2RxM3hPUm8ra0k0NHZGUT09		
2	http://ndl.iitkgp.ac.in/document/SFBhRUg0cDg3MTJyRXE0OVB5RkpLZz09		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination-Theory		
Practical Examination	15	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15	
Writing assignment/ Seminar presentation		
Practical Examination + Laboratory reports	10	

Sample Questions to test Outcomes.

2 Marks Question

- What are the two main types of cells, and what distinguishes them from each other?
- Explain the fluid mosaic model of the cell membrane and its significance in cell biology.
- What are the phases of the eukaryotic cell cycle, and what happens during each phase?
- ➤ How does protoplasmic streaming contribute to cellular functions in plants?

> Define cytokinesis and describe its role in cell division.

3 Marks Questions (Applying and Analyzing):

- Using a diagram, illustrate the structure of a plant cell wall and explain its functions.
- > Compare and contrast the structure and function of mitochondria and chloroplasts.
- > Design an experiment to demonstrate the process of phagocytosis in cells.
- Analyze the implications of the endosymbiotic theory for our understanding of cellular evolution.
- ➤ Propose a hypothesis to explain the possible evolutionary line of three cells- A-prokaryotic cell autotrophic, B-prokaryotic heterotrophic and C-eukaryotic autotrophic.
- Five an illustrated self-explanatory diagram of prokaryotic and eukaryotic cells, indicating their primary structural differences.

5 Marks Questions (Evaluating and Creating):

- ➤ Evaluate the significance of mitosis in the growth and development of multi-cellular organisms.
- > Design an educational poster illustrating the stages of meiosis and explaining their importance in sexual reproduction.
- > Critically evaluate the role of the endomembrane system in protein synthesis and trafficking within cells.
- ➤ Develop a model to demonstrate the role of the cytoskeleton in maintaining cell shape and facilitating cell movement.
- ➤ Evaluate the impact of advancements in cell biology on modern scientific research and technology.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in biology as well as in daily life

2 ANGIOSPERM ANATOMY, EMBRYOLOGY AND PALYNOLOGY

Semester : II
Hrs/week : 3 Theory + 1 Practical

KU2DSCPLS102

Credits : 4

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	e Outcomes			
C01	Knowledge in the internal structure of angiosperm.			
C02	Understanding of the anatomical, palynological and embryological related terms used in the description of diverse forms of life.			
C03	Understanding the variations in the internal structure and reproduction that exist in various plant groups.			
C04	Interpret the adaptive and protective mechanisms exhibited by plants in response to various environmental conditions.			
C05	Ability to apply the concepts in the field of evolution and diversity studies.			
C06	Firsthand experience in viewing cells under microscope and there by induction of enthusiasm in biological studies.			

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V		V									
CO2		$\sqrt{}$			$\sqrt{}$							
CO3							V	$\sqrt{}$				
CO4											\checkmark	$\sqrt{}$
CO5				V					$\sqrt{}$			
CO6											$\sqrt{}$	$\sqrt{}$

Course Description

The course offers a thorough exploration of plant biology- angiosperm anatomy, embryology, palynology. Students get theoretical and practical knowledge about various plant tissues, tissue systems present in various plant organs; along with secondary growth of root and stem. Additionally, the course gives insights into various terms and stages in embryology, fertilization mechanisms.

- First module brings the knowledge of tissues and tissue systems in angiosperms
- Second module gives an account on structure of primary plant body and its secondary growth.

- Third module is packed with pre fertilisationsal stages relevant in the embryology of angiosperms.
- Fourth module gives in-depth knowledge on embryo formation, structure and variations.

This course will also provide opportunities for intense laboratory sessions to observe diverse tissues and tissue systems present in plants.

Course Objectives:

- 1. Understand plant tissue classification, structure, and functions.
- 2. Explore plant anatomy, including primary structures and tissue systems.
- 3. Study plant reproduction mechanisms and embryology.
- 4. Develop practical skills in observing and analyzing plant structures and tissues.

Credit			Teaching H	ours	A	ssessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3+0+2 (45+0+30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100

COURSE CONTENT

Module 1. Plant Tissues and Tissue Systems (12 hours)

- 1.1. Introduction to plant tissues and their classification. Meristems and Permanent Tissues. Classification, distribution, structure, and function of meristems.
- 1.2. Theories explaining the growth and development of plant structures from meristem. Histogen theory, Tunica Corpus Theory. Developmental processes of the plant body: root apex, vegetative shoot apex, floral apex.

etc.

- 1. 3. Occurrence, structure and functions of simple tissues: Parenchyma, Collenchyma, Sclerenchyma. Complex tissues: Xylem and Phloem. Special tissues- Types of secretory tissues: digestive glands, glandular hairs, nectaries,
- 1.4. General Account of Epidermal tissue system, Ground tissue system and Vascular System.
- Types of Stomata- monocot and Dicot; different types of vascular bundles-Radial, Conjoint, Collateral- open and closed, Bicollateral.

Module 2. Structure of Plant Body (15 hours)

- 2.1. Anatomy of primary structures: roots, stems, and leaves in dicots and monocots with a comparative account. Nodal Anatomy- Types of nodes and Evolutionary trend. Anatomy of Abscission zone. Floral anatomy and mechanisms of flower development.
- 2.2. Processes and structures involved in secondary growth: distribution, structure and

function of stelar cambium and extra-stelar cambium. Secondary growth in dicot stem root. Seasonal variation in cambial activity and its implications on wood formation. Heartwood and sap wood. Spring wood and Autumn Wood.

- 2.3. Anomalous Secondary growth- A general account on types of anomalies. Unusual patterns of secondary growth in *Dracaena*, *Bignonia* and *Boerhaavia*.
- 2.4. Anatomical adaptations in xerophytes, halophytes, epiphytes, hydrophytes.

Module 3. Sporogenesis, Gametophyte formation and Pollination (10 hours)

- 3.1. Introduction to Angiosperm Embryology and Palynology: Historical overview of embryology and its significance. Various techniques in Embryology and Palynology. General account on pollen structure and morphology. Applications of Embryology and Palynology.
- 3.2. Structure and functions of microsporangium and its wall layers. Pollinia. Microsporogenesis- process, types and male gametophyte development.

Megasporogenesis: process and significance in female gametophyte development.

- 3.3. Structure and functions of megasporangium- Types of ovules. Megasporogenesis-process, types and female gametophyte development. Monosporic, Bisporic and Ttrasporic; detailed structure of Polygonum type of Embryosac.
- 3.4. Pollination- Types of Pollination- Self Pollination and Cross Pollination. Significance of Cross Pollination. Different Mechanisms of pollination. Basic concept of self-incompatibility. Economic and Evolutionary significance of Pollination.

Module 4. Fertilization and Embryogenesis (8 Hrs)

- 4.1. Pollen tube formation and fertilization: Processes and significance. Types of pollen tube entry- Porogamy, Chalazogarmy and mesogamy.
- 4.2. Double Fertilization and triple fusion- processes and significance. Structure, development, and types of endosperms.
- 4.3. Development of Embryo in Dicots and Monocots with major substages. Structure of mature dicot and monocot embryos.
- 4.4. Apomixis and Amphomixis. Classification and significance of polyembryony. Brief account on Experimental Embryology.

Module 5. Teach Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Observation of apical meristems in root and stem.
- 2. Microphotographs of different types of tissues- Parenchyma- Aerenchyma Chlorenchyma (Spongy, Palisade), Collenchyma, Sclerenchyma, Xylem and Phloem
- 3. Microphotographs of different types of tissue systems- trichomes, stomata- Anomocytic,

Paracytic, Diacytic and Anisocytic.

- 4. Primary structures in dicot stem (*Centella*), root (*Tinospora*), and leaf (*Ixora*) and monocot stem (*Grass*), root (*Colocasia*), and leaf (*Grass*).
- 5. Secondary Structures in Dicot root (*Tinospora*, *Ricinus*) and Stem (*Eupatorium/Vernonia* and *Tinospora*)
- 6. Anomalous secondary thickening in *Boerhaavia* stem.
- 7. Acetolysis of Pollengrains Hibiscus
- 8. TS of Mature anther- Datura, Ixora
- 9. Observation of Pollinia- Calotropis/ Orchids
- 10. Embryos of Monocots and Dicots

Suggested Assignments - Theory

- 1. Different theories on meristem
- 2. Different types of nodes with examples
- 3. Root stem transition with examples
- 4. Biochemical changes that happen during abscission
- 5. Anomalous secondary thickening in various climbers and herbs and shrubs
- 6. Types of anthers with examples
- 7. Variations in Pollen morphology
- 8. Anatomy and taxonomy
- 9. Anatomy and Evolution
- 10. Polyembryony and Apomixis with examples and relevance
- 11. Production of fruits without pollination/seeds

Suggested Assignments - Practical

- 1. Different types of nodes with examples
- 2. Root stem transition with examples
- 3. Anomalous secondary thickening in various climbers and herbs and shrubs
- 4. Types of anthers with examples
- 5. Variations in Pollen morphology
- 6. Pollen calendar preparation
- 7. Aeropalynology- survey

Sugg	Suggested readings specific to the module.				
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.			
No					
1	Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of	3, 4			
	Angiosperms, Vikas Pub. House. Delhi. 5th edition.				
2	Dutta, A. C. (2019). Botany for Degree Students. Oxford University	1, 2, 3, 4			
	Press.				
3	Esau, K. (1953). Plant Anatomy. John Wiley & Sons.	1, 2			

4	Johri, B.M. 1 (1984). Embryology of Angiosperms, Springer-Verlag,	3, 4	
	Netherlands		
5	Pandey, B. P. (2009). Plant Anatomy and Embryology. S. Chand &	1, 2, 3, 4	
	Company Ltd.		
6	Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford	3	
	and IBH Pub. Co. Pvt. Ltd. Delhi.		
7	Tripathi, R. D. (2018). Introduction to Plant Anatomy. Rastogi Publications	1, 2	
Core	Compulsory Readings		
1	Fahn, A. (1990). Plant Anatomy. Pergamon Press.		
2	Kaur, R., & Singh, J. (2019). Practical Plant Embryology. S. Chand Publishing.		
3	Mauseth, J. D. (2012). Plant Anatomy and Development. Jones & Bartlett Learning		
4	Singh, S., & Singh, P. K. (2015). Textbook of Embryology. CBS Publishers		
	&Distributors Pvt. Ltd		
Core	Suggested Readings		
1	O'Brien, T. P., & McCully, M. E. (1981). Introduction to Plant Anat	omy. Academic	
	Press.		
2	Mauseth, J. D. (2012). Plant Anatomy: An Applied Approach. Jor	nes & Bartlett	
	Learning.		
3	Irish, V. F. (2009). Plant Development and Evolution. Wiley-Blackwell		
4	Taiz, L., & Zeiger, E. (2010). Principles of Plant Physiology. Sinauer A	ssociates, Inc.	

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks		
End Semester Evaluation ESE	65		
University Examination-Theory			
Practical Examination	15		
Continuous Comprehensive Assessment CCA			
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15		
Writing assignment/ Seminar presentation			
Practical Examination + Laboratory reports	10		

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. Explain the structural characteristics of Parenchyma tissue and its role in plant physiology.
- 2. Differentiate between conjoint and collateral vascular bundles, highlighting their significance in plant structure and function.
- 3. Define the term "hydathodes" and discuss their role in plant water management.
- 4. Describe the structure of the root apex in dicot plants and its importance in root development.
- 5. Compare and contrast the anatomy of monocot and dicot leaves, emphasizing their structural differences.

3 Marks Questions:

- 1. Discuss the functions of secretory tissues in plants and provide examples of plant organs where they are found.
- 2. Analyze the process of microsporogenesis and its significance in plant reproduction.
- 3. Explain the mechanism of self-incompatibility in plants and its implications for pollenpistil interactions.
- 4. Compare the structures of dicot and monocot embryos, highlighting their developmental differences.
- 5. Evaluate the importance of endosperm in seed development, citing examples of different types of endosperm.

5 Marks Questions:

- 1. Describe the process of double fertilization in angiosperms, including the events occurring during each fertilization event.
- 2. Discuss the structure and functions of the vascular cambium in secondary growth of roots and stems.
- 3. Analyze the adaptive features of xerophytes and hydrophytes, illustrating how their anatomical structures enable them to thrive in their respective habitats.
- 4. Explain the significance of pollen allergy in human health and its ecological implications.
- 5. Compare and contrast the primary and secondary structures of dicot stems, highlighting their differences in tissue composition and organization.

Employability for the Course / Programme

It is one of the basic courses with intense practical exercises involving the observation of plant structures and tissues; thereby provides a solid foundation in plant biology essential for careers in botany, agriculture, and pharmacognosy.

3	Diversity of Algae and Bryophytes	KU3DSCPLS201
Semester: 3 Hrs/week: 3 Theory + 1 Practical		Credits : 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English
- **3.** Completed the basic foundation courses in the first two semesters

Course	Outcomes
CO1	Acquisition of basic knowledge in the diversity among plants, especially algae and bryophytes.
CO2	Understanding of the life cycles in algae and bryophytes.
CO3	Understanding the basic differences that exist among different selected genera of algae and bryophytes
CO4	Ability to apply the concepts gathered in this course to the field of evolution and ecological studies.
CO5	Firsthand experience in viewing the diversity in algae and bryophytes using laboratory procedures

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V	V	V									
CO2	\checkmark				$\sqrt{}$							
CO3						$\sqrt{}$	V					
CO4											$\sqrt{}$	V
CO5								V	V			

Course Description

This is a major intermediate course designed for BSc Botany students. The aim of the course is to give basic knowledge about the diversity of algae and bryophytes..

- First module gives a general idea on Algal classification.
- Second module gives details on the structure and life cycle of model organisms from selected algal taxa.
- Third module gives a general account on classification of bryophytes
- Fourth module is a detailed account on selected bryophytes.

This course will also provide you opportunities to observe diverse cells, tissues and organs of algae and bryophytes, through the practical sessions on model organisms.

Course Objectives:

- 1. To expertise in collection, preservation and studies in algae and bryophytes.
- 2. A comparative knowledge of lower plants.
- 3. Skill development in for proper description, identification and classification through morphological, anatomical and life cycle studies
- 4. Consciousness on the origin and evolution of lower groups of plants.

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	1	4	3+0+2 (45+0+30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100	

COURSE CONTENT

Module 1. Taxonomy of Algae (10 hrs)

- 1.1. Salient features of algae; Features used for the identification; Classification of algae F E Fritsch.
- 1.2. Origin and evolution of Algae, Relationships of Algae.
- 1.3. Thallus organization in algae. Pigments and stored food in algae. flagella types, life cycle and alternation of generations in algae. Evolutionary trends in Algae.
- 1.4. Brief Account on Indian Algology and major contributors

Module 2. Diversity of Algae (15 hrs)

- 2.1. Study of the habitat, distribution, habit, anatomy, reproduction and life cycle of Cyanophyceae-*Nostoc* and *Oscillatoria*, Chlorophyceae -*Volvox*, *Zygnema*, *Oedogonium*, *Chara*; Xanthophyceae *Vaucheria*; Bacillariophyceae *Pinnularia*; Phaeophyceae *Sargassum*; Rhodophyceae *Polysiphonia* (Developmental details are not required).
- 2.2. General methods in collection, preservation and Algal culturing. Ecological and economic importance of Algae. Algal blooms.

Module 3. Taxonmy of Bryophytes (8 hrs)

- 3.1.General characters and classification of bryophytes. Diversity-habitat, thallus structure and Sprophyte structure. Salient features for the identification. Classification.
- 3.2.Evolutionary trends and affinities with Algae. Evolution of gameto phyte and sporophyte among Bryophytes.

Module 4. Diversity of Bryophytes (12 hrs)

4.1. Distribution, morphology, anatomy, reproduction and life cycle of the following types (developmental details are not required): Hepaticopsida - *Riccia*, *Marchantia*;

- Anthocerotopsida Anthoceros; Bryopsida Funaria.
- 4.2. General methods in collection and preservation of Bryophytes Ecological and Economic importance of Bryophytes

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Micropreparations and microscopic observations of vegetative and reproductive structures of model genera of algae and bryophytes.
- 2. Documentation of algal and bryophyte diversity in various nearby places.
- 3. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	➤ Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS			
End Semester Evaluation ESE			
University Examination-Theory	50		
Practical Examination	15		
Continuous Comprehensive Assessment CCA			
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15		
Writing assignment/ Seminar presentation	10		
Practical Examination + Laboratory reports	10		

Employability for the Course / Programme

It is one of the intermediate major course which is very essential for understanding the diversity of plants, especially of lower plants, for the completion of BSc Botany.

4	Angiosperm systematics I	KU3DSCPLS202
Semest	er: 3	Cuadita . 4
Hrs/we	Credits : 4	

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English
- **3.** Completed the basic foundation courses in the first two semesters

Course	Outcomes
CO1	Knowledge on basic terms and methods in Angiosperms Taxonomy
CO2	Understanding the diversity in angiosperm morphology
CO3	Classification of angiosperms, especially belonging to Polypetalae, based on evaluation of taxonomic characters
CO4	Skill in conducting taxonomic field work, collection and identification of
	angiosperms.

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V	V	V									
CO2						V						
CO3			$\sqrt{}$		$\sqrt{}$				V			
CO4							V	$\sqrt{}$		$\sqrt{}$		

Course Description

This course is tailored for student majoring in Botany, focusing on foundational aspects of Angiosperm Systematics. The course blends theoretical knowledge and practical skills, including hands-on plant identification, field visits, and herbarium techniques.

- First module deals with the classification of angiosperms and Indian contribution in taxonomy.
- Second module draws attention to the vegetative morphology of angiosperms.
- Third module gives an idea on reproductive morphology of angiosperms.
- Fourth module is related to the taxonomic characters of selected families in Polypetalae.

This course will also provide you opportunities to observe diverse angiosperms through the practical sessions on model organisms.

Course Objectives:

- 3.3. Develop a Fundamental Understanding of Systematics and Taxonomy
- 3.4. Acquire Proficiency in Angiosperm Classification and Nomenclature
- 3.5. Explore Polypetalous Plant Families with Economic Significance
- 3.6.Integrate theoretical understanding with practical skills through hands-on activities such as plant identification, field visits to botanical gardens or natural habitats, and herbarium techniques.
- 3.7. Prepare Students for Practical Applications in Botany

Credit			Teachin	g Hours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
4	0	4	4 +0 +0 (60 +0 +0)	4 (60)	30	70	100	

COURSE CONTENT

Module 1. Classical Taxonomy of Angiosperms: 10 hrs

- 1.1 Salient features of Angiosperms; Classification by Linnaeus, Bentham and Hooker.
- 1.2 Origin and evolution of angiosperms, Relationship, similarities and dissimilarities with Gymnosperms.
- 1.3. Major Indian contributors:
- 1.4. Basic Features used for classical systematic of angiosperms. Basic Herbarium technique.

Module 2. Vegetative Morphologic characters: 15 hrs

- 2.1. Root: types of roots and modifications in angiosperms
- 2.2. Stem types of stem and modifications in angiosperms
- 2.3. Leaf types of leaves and phyllotaxy and leaf modifications in angiosperms

Module 3. Reproductive Morphologic characters: 8 hrs

- 3.1. Flower the sex organ and general features non essential and essential whoerls. Adhesion and cohesion. Aestivation. Placentation
- 3.2. Inflorescence- types
- 3.3. Fruits types
- 3.4. Seeds and germination-types

Module 4. Diversity of Polypetalae: 12 hrs

4.1. Study of the distribution, habit, major vegetative and reproductive features Annonaceae, Nympheaceae, Malvaceae, Rutaceae, Anacardiaceae, Fabaceae with sub families.

Module 5. TEACH Space 15 hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Survey and documentation of vegetative modifications in angiosperms.
- 2. Survey and documentation of reproductive morphology of angiosperms
- 3. Study of Adhesion, Cohesion, Aestivation and Placentation in common plants.
- 4. Germination experiments.
- 5. Major vegetative and reproductive features Annonaceae, Nympheaceae, Malvaceae, Rutaceae, Anacardiaceae, Fabaceae with sub families.
- 6. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS		
End Semester Evaluation ESE		
University Examination	70	
Continuous Comprehensive Assessment CCA	30	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10	
Writing assignment	5	
Laboratory reports	5	
Practical Examination	10	

Employability for the Course / Programme

It is one of the intermediate major course which is very essential for understanding the diversity of plants, especially of Angiosperms and also for the completion of BSc Botany.

5	Diversity of Pteridophytes and Gymnosperms	KU4DSCPLS203
Semest Hrs/we	ter: 4 tek: 3 Theory + 1 Practical	Credits: 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English
- **3.** Completed the basic foundation courses in the first two semesters

Course	Outcomes
CO1	Acquisition of basic knowledge in the diversity among plants, especially Pteridophytes and gymnosperms.
CO2	Understanding of the life cycles in pteridophytes and gymnosperms.
CO3	Understanding the basic differences that exist among different selected genera of Pteridophytes and gymnosperms.
CO4	Ability to apply the concepts gathered in this course to the field of evolution and ecological studies.
CO5	Firsthand experience in viewing the diversity in tracheophytes using laboratory procedures.

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$		$\sqrt{}$						
CO3					$\sqrt{}$	\checkmark	$\sqrt{}$					
CO4									$\sqrt{}$	$\sqrt{}$	\checkmark	
CO5									$\sqrt{}$	$\sqrt{}$		

Course Description

This is a major intermediate course designed for BSc Botany students. The aim of the course is to give basic knowledge about the diversity of pteridophytes and gymnosperms.

- First module deals with the taxonomy of Pteridophytes.
- Second module is giving and idea on diversity of Pteridophytes through selected taxa.
- Third module is focused on the classification of Gymnosperms.
- Fourth module is a giving a detailed account on diversity of Gymnosperms.

This course will also provide you opportunities to observe diverse cells, tissues and organs of Pteridophytes and gymnosperms through the practical sessions on model organisms.

Course Objectives:

- 1. To expertise in collection, preservation and studies in Pteridophytes and Gymnosperms.
- 2. To achieve a comparative knowledge of lower vascular plants.
- 3. To develop skill in proper description, identification and classification through morphological, anatomical and life cycle of ferns and gymnosperms.
- 4. Consciousness on the origin and evolution of lower groups of plants.

Credit			Teaching H	ours	Assessment		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3+0+2	5	35	65	100
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)	

COURSE CONTENT

Module 1. Taxonomy of Pteridophytes

10 hrs

- 1.1 Salient features of Pteridophytes; Features used for the identification; Classification of pteridopytes- Reimer
- 1.2 Origin and evolution of Pteridophytes, Relationships of pteridophytes, similarities and dissimilarities with bryophytes.
- 1.3. Stelar variation and stelar evolution in Pteridophytes; heterospory and seed habit.
- 1.4. Brief Account on Indian Pteridology and major contributors

Module 2. Diversity of Pteridophytes 15 hrs

- 2.1. Study of the habitat, distribution, habit, anatomy, reproduction and life cycle of *Psilotum*, *Selaginella*, *Equisetum*, *Pteris* and *Marsilea*. (Developmental details are not required).
- 2.2. General methods in collection, preservation, staining techniques for spores and reproductive parts. Ecological and economic importance of Pteridophytes

Module 3. Taxonomy of Gymnosperms

8 hrs

- 3.1. Salient features of gymnosperms. Classification -Sporne's
- 3.2. Origin and evolution of Gymnosperms. Relationship with Pteridophytes and Angiosperms
- 3.3. Distribution of Gymnosperms in India. Gymnosperm studies in India.

Module 4. Diversity of Gymnosperms 12 hrs

- 4.1. Study of the habitat, distribution, habit, anatomy, reproduction and life cycle of *Cycas, Pinus* and *Gnetum* (Developmental details not required).
- 4.2. General methods in collection, preservation and staining techniques for the vegetative and reproductive parts of Gymnosperms
- 4.3. Ecological and Economic importance of Gymnosperms

Module 5. TEACH Space 15 hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Micropreparations and microscopic observations of vegetative and reproductive structures of model genera of Pteridophytes and gymnosperms.
- 2. Documentation of Pteridophyte and gymnosperm diversity in various nearby places.
- 3. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS			
End Semester Evaluation ESE			
University Examination-Theory	50		
Practical Examination	15		
Continuous Comprehensive Assessment CCA			
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15		
Writing assignment/ Seminar presentation	10		
Practical Examination + Laboratory reports	10		

Employability for the Course / Programme

It is one of the intermediate major courses which is very essential for understanding the diversity of plants, especially of tracheophytes, for the completion of BSc Botany.

6	Angiosperm Systematics II	KU4DSCPLS204
Semest Hrs/we	er : 4 ek : 3 Theory + 1 Practical	Credits: 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English
- **3.** Completed the basic foundation courses in the first two semesters

Course	e Outcomes
CO1	Acquisition of basic knowledge in the diversity among Angiosperms, other than polypetalae.
CO2	Understanding of modern angiosperm classification.
CO3	Understanding the basic differences that exist among different selected families of angiosperms
CO4	Ability to apply the concepts gathered in this course to the field of evolution and ecological studies.
CO5	Firsthand experience in viewing the diversity of angiosperms using laboratory procedures

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	V									
CO2		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$							
CO3				V				\checkmark				
CO4						\checkmark	$\sqrt{}$					
CO5									V	V		

Course Description

This course is meant for the student in Botany major, focusing on systematics and taxonomy of selected gamopetalae, monochlamydeae and monocot families. The course blends theoretical knowledge and practical skills, including hands-on training in plant description and identification, field visits, and herbarium techniques.

- First module deals with modern systematic and typification.
- Second module focuses on families belonging to gamopetalae.

- Third module outlines the characteristics of selected angiosperm families belonging to monocotyledonae and monochlamydeae.
- Fourth module comapares the modern and classical systematics.

This course will also provide you opportunities to observe diverse angiosperms through the practical sessions on model organisms.

Course Objectives:

- 1. Develop a fundamental understanding of modern systematics and taxonomy of angiosperms.
- 2. Acquire Proficiency in Angiosperm Classification and Nomenclature
- 3. Explore angiosperm families other than Polypetalae with Economic Significance
- **4.** Integrate theoretical understanding with practical skills through hands-on activities such as plant identification, field visits to botanical gardens or natural habitats, and herbarium techniques.
- 5. Prepare Students for Practical Applications in Botany

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	1	4	3+0+2	5	35	65	100	
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)		

COURSE CONTENT

Module 1. Introduction to Modern systematics of Angiosperms (10 hrs)

- 1.1 Typification-. Holotype, Syntype, Lectotype, Paratype,
- 1.2 Rules of Botnaical Nomenclature. ICN. Rule of Priority.
- 1.3. Numerical Taxonomy, Chemotaxonomy. Molecular Taxonomy.
- 1.4. Brief account on Phylogentic System of Classification. Engler and Prantle, APG system of classification. Evolution of APG system.

Module 2. Diversity of Gamopetalae (15 hrs)

Study of the distribution, habit, major vegetative and reproductive features of gamopetalae.. Combretaceae, Cucurbitaceae, Apiaceae, Rubiaceae, Asteraceae, Sapotaceae, Apocynaceae, Asclepiadaceae, Solanaceae, Acanthaceae, Verbenaceae, Lamiaceae.

Module 3. Diversity of Monochlamydeae and Monocotyledonae (15 hrs)

- 3.1. Study of the distribution, habit, major vegetative and reproductive features of Monochlamydeae.. Euphorbiaceae, Amarantaceae,
- 3.2. Study of the distribution, habit, major vegetative and reproductive features of Monocotyledoneae. Orchidaceae, Zingiberaceae, Liliaceae, Arecaceae, Poaceae

- 4.4. Comparative account on classification. Merits and demerits of Bentham and Hookers classification. Bentham and Hooker's Vs. APG system
- 4.5. Brief account on Phylogenetics and Cladistics in Angiosperms.

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Major vegetative and reproductive features of families given above.
- 2. Visit to a taxonomic research station to gather knowledge on the typification procedures.
- 3. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination-Theory	50	
Practical Examination	15	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15	
Writing assignment/ Seminar presentation	10	
Practical Examination + Laboratory reports	10	

Employability for the Course / Programme

It is one of the intermediate major course which is very essential for understanding the diversity of plants, especially of angiosperms, for the completion of BSc Botany.

7	Genetics	KU4DSCPLS205
Semester Hrs/weel	: 4 x : 3 Theory + 1 Practical	Credits: 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English
- **3.** Completed the basic foundation courses in the first two semesters

Course	Course Outcomes					
CO1	Acquisition of basic knowledge in classical genetics					
CO2	Understanding the basic mechanism of phenotypic expressions.					
CO3	Understanding the basis of differences that exist among different species.					
CO4	Ability to apply the concepts gathered in this course to the field of evolution.					
CO5	First -hand experience in solving genetic problems					

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2					$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					
CO3				V	$\sqrt{}$							
CO4										V	V	$\sqrt{}$
CO5	_						V		V	·		

Course Description

It is a comprehensive exploration of the fundamental principles and applications of genetics, beginning with an introduction to Mendelian genetics and Molecular Basis of genetics. The course also covers on social relevance of genetics and HGP.

- *First module is an introduction to the branch of genetics.*
- Second module gives a detailed background and progress of Mendelian genetics.
- Third module gives an idea on different types of ratio in phenotypic expression.
- Fourth module is focused on the basic knowledge on genes, DNA and chromosomes.

This course will also provide opportunities to practice the problems in genetics.

Course Objectives:

- 1. Identify the basic principles and current trends in classical genetics.
- 2. Recognise the historical process of the evolution of molecular genetics from classical genetics.
- 3. Review the relevance of the application of genetic principles in agriculture, medicine, research and industry.

Credit			Teaching H	ours	Assessment		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3+0+2 (45+0+30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100

COURSE CONTENT

Module 1.Introduction to Genetics (5 hrs)

- 1.1 Definition and scope of genetics. Brief history of genetics. Early concepts on reproduction and genetics. Phases of genetics.
- 1.2 Major terms used in genetics factors, genes, chromosomes, alleles, homozygous and heterozygous, hemizygous, traits, phenotypes, genotypes, locus, linkage, mutation; population, offspring, clone, Test cross, back cross, reciprocal cross.
- 1.3 Genetics and Epigenetics. Genetics and Society Euthenics, Eugenics, and Euphenics with examples.
- 1.4 Human genome project- Mile stones- Major output and their relevance in medicine and disease management.

Module 2. Mendelian Genetics (8 hrs)

- a. Brief account of Mendel's life history
- b. Mendelian experiments: Monohybrid cross and dihybrid cross, Mendelian ratios, Laws of inheritance.
- c. Reasons for Mendel's success. Mendelian Genetics and sexual cycle in plant.
- d. Rediscovery of Mendelism. Reasons for negligence of Mendelian discoveries.

Module 3. Mendelian and Non-Mendelian ratios. (17 hrs)

- 3.1. *Allelic interactions*: dominant recessive, Incomplete dominance flower color in Mirabilis; Co-dominance Coat colour in cattle, Lethal genes Sickle cell anemia in Human beings.
- 3.2. Interaction of genes: Non epistatic Comb pattern inheritance in poultry 9:3:3:1. Epistasis: dominant Fruit colour in summer squashes12:3:1; recessive Coat color in mice 9:3:4; Complementary gene interaction- flower color in Lathyrus 9:7:1. Inhibitory genes Leaf Colour in paddy 13:3; Duplicate gene interaction- Shepherd's Purse15:1, Duplicate

genes with cumulative effect-9:6:1.

3.3. Quantitative inheritance- Polygenes-General Characters-. Ear size in corn. Transgressive variation-Heritability Phenotypic expression- Penetrance and expressivity. Pleotropic genes. Examples from plants and human beings.

Module 4. DNA, Genes and Chromosomes (15 hrs)

- 4.1. Concept of Genes from factors to the modern concept of gene. Role of chromosomes in inheritance and its significance.
- 4.2. Chromosome Morphology, Chromosomal nomenclature- Chromatid, Centromere, Telomere, Secondary constriction, Satellite and Nucleolar Organizing Regions.
- 4.3. Chromosomal classification based on position and number of Centormere. Heterochromatin and Euchromatin, Karyotype and Idiogram.Chromatin reticulum-Structure, Chemical organization of Chromosomes; DNA and Histones. Packaging the DNA into Chromosomes,
- 4.4. Special types of chromosomes: Polytene chromosomes, Lamp brush chromosomes and B chromosomes.

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Dihybrid inheritance
- 2. Allelic and Non allelic Gene interactions.
- 3. Poster preparation on HGP
- 4. Poster presentation competition on Chromosome structure.
- 5. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination-Theory	50			
Practical Examination	15			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blan matching, short answer and critical thinking questions)	k, 15			
Writing assignment/ Seminar presentation	10			
Practical Examination + Laboratory reports	10			

8	Mycolo	gy and Plant Pathology	KU5DSCPLS301
DSC	Semester: 5	Hrs/week: 3 Theory + 1 practical	Credits: 4

- 1. Knowledge in Biology at 201-299 level
- 2. Ability to write examination in English

Course	Outcomes
CO1	Understand fungal biology and classification based on structural, nutritional, and reproductive features of fungi
CO2	Analyze fungal life cycles and their applications in agriculture, industry, and medicine.
CO3	Identify diseases in common crop plants based on the symptoms and causal agents including fungi, bacteria, viruses, phytoplasmas, nematodes, and parasitic plants.
CO4	Evaluate disease dynamics based on disease cycle and epidemiology and Management Strategies including cultural, biological, chemical, and integrated methods.
CO5	Develop skills in diagnosing plant diseases using real-world case studies and recommend appropriate control measures with an understanding of Integrated Disease Management (IDM).

Mapping of Course Outcomes to PSOs/Pos

LP.												
IST	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	✓											
CO2		✓										
Есоз			✓			✓						
CO4			✓				√					
≥CO5					•		√	√			√	√

Course Description

This course provides a basic understanding of fungi and plant diseases. It covers fungal biology, classification, life cycles, and the role of fungi in nature and industry. Students also learn about plant pathogens, disease symptoms, and control methods through theory and practical sessions.

- First module gives a general idea on fungal classification.
- Second module gives details on life cycles and the ecological and economic roles of key fungi.
- Third module gives a general account on plant disease causes, types, spread, and basic control methods.
- Fourth module is a detailed account on present's case studies of major plant diseases and their management.

This course equips students with foundational knowledge in mycology and plant pathology, helping them understand fungal diversity, plant diseases, and effective management strategies through both theoretical insights and practical experience.

1. Understand the fungal diversity through the differences in basic structure and reproduction of fungi along ith their classification.

earn about important fungi and their role in the environment and economy.

tudy plant diseases, their causes, symptoms, and how they spread.

evelop skills to diagnose plant diseases and apply control methods.

	Credit		Teaching I	Hours	Asse	essment	
T/L/ge	P/I	Total	L/T/P	Total	CCA	ESE	Total
Bad 3	1	4	3+0+2 (45+0+30)	5	25	50	75

COURSE CONTENT

Module 1: General Mycology 10 Hours

- 1.1. General Characteristics of Fungi Eukaryotic nature, heterotrophic nutrition, Cell wall composition, food storage, Thallus organization and structure. Asexual and sexual reproductive mechanisms. Similarities between some fungal groups with other groupsbacteria and algae.
- ≤1.2. Classification of Fungi -Overview based on Alexopoulos et.al. (1972). Recent advances Fin Fungal classification. Key features and examples of: Zygomycetes, Ascomycetes, Basidiomycetes, Oomycetes, Mitosporic fungi
- 1.3. Symbiotic Associations with algae; Lichens- General characters of lichens. Classification of Lichens- Crustose, Foliose and Fruticose. Structure, Reproduction and Life Ecycle of Usnea. Economic importance and Ecological significance of Lichens
- 1.4. Symbiotic Associations with other plants- Mycorrhiza- General features-Endomycorrhiza and ectomycorrhiza. VAM fungi.

Module 2: Life Cycles and Significance of Fungi: 10 Hours

- 2.1. Morphology and Reproduction of Selected Genera: Rhizopus, Pythium, Saccharomyces
- -2.2.Detailed Life Cycles: Penicillium, Peziza, Puccinia, Cercospora
- 2.3. Ecological Role of Fungi: Fungal involvement in decomposition of organic matter and nutrient cycling. Applications in Agriculture- Cultivation of Edible mushrooms
- 2.4. Industrial uses of Fungi: Fermentation, antibiotic production
- 2.4. Human life and Fungi: Major fungal diseases of man. Allergy of fungal spores. Food spoilage. Fungal toxins

Module 3: Fundamentals of Phytopathology 8 Hours

- 3.1. Concepts and Causes of Disease: Definition of plant diseases. Common causative agents and symptoms.
- 3.2. Classification and Transmission: Classification based on symptoms and causative agents- Fungi, bacteria, viruses, nematodes, phytoplasmas. Disease dissemination and transmission pathways.
- 3.3. Disease Cycle and Epidemiology: Simple vs. compound interest diseases. Hostpathogen interactions and disease triangle
- 3.4.Plant Disease Management: Approaches: Legal- certified seeds and plant quarantine, cultural practices- importance of felling of diseased plants, distance between plants, intercropping, mixed cultivation Vs Monocultures, Greenhouses and Precision farming. Biological and chemical measures (fungicides, bactericides). Breeding for disease resistance.

Module 4. Case Studies in Plant Pathology 8 hours

- 54.1. Fungal and Bacterial Diseases: Symptoms and control measures of Citrus canker (Xanthomonas citri), Mahali of arecanut (Phytophthora arecae), Grey leaf spot of coconut (Pestalotia palmarum) and Abnormal leaf fall of rubber (Phytophthora palmivora)
- ≥4.2. Viral and Phytoplasma Diseases: Symptoms and control measures of Banana bunchy etop (Virus) and Coconut root wilt (Phytoplasma)
- Momatode Diseases: Symptoms and control measures of Root knot in Banana ogyne incognita).

Role of Integrated Disease Management (IDM)

琴語: 5. TEACH SPACE 9 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is strictly internal.

Theory 9Hrs

General microbiology and Bacteriology: plant microbe interactions. Significance of microbiology.

Practical 30 Hrs

- 1. Microscopy and Slide Observation: *Rhizopus, Penicillium, Puccinia* (uredia, telia), Cercospora. Budding in Saccharomyces, ascocarps in Peziza.
 - 2. Plant Disease Specimens: Study of symptoms: Citrus canker, Bunchy top of banana. Abnormal leaf fall of rubber
 - 3. Gross and micromorphology of Trichoderma
 - 4. Application of Pseudomonas fluorescence by seed biopriming and soil treatment
 - 5. Observation of AM fungi in roots by staining with writing ink.
 - 6. Disease Diagnosis and Management:
 - a. Preparation of disease cycle charts.
 - b. Demonstration of Bordeaux mixture preparation.
 - c. Field Visit to study of diseases in local farms/plantations.

- 1. Diseases of crops and their control measures
 - 2. Fungal disease of man and its treatment
 - 3. Nutrition of Fungi
 - 4. Relationship between termites and fungi
 - 5. Tissue culture for disease resistance
 - 6. Breeding for disease resistance

- 1. Collection and preservation of fungi
- Observation of diseased crop plants and fungi using mobile camera/ digital camera and prepare a report
- 4. Common plant diseases during reproductive stages

0								
0/2	Sl. No	Title/Author/Publishers of the Book specific to the module						
106	1	Agrios, G.N. (2005). Plant Pathology, 5th Ed. Academic Press.						
C3/5	2	Alexopoulos, C.J., Mims, C.W., & Blackwell, M. (1972). <i>Introductory Mycology</i> . Wiley.						
SAL	3	Bilgrami, K.S., Dube, H.C. (1990). <i>Modern Plant Pathology</i> . Vikas Publishing.						
3/AC	4	Mandahar, C.L. (2007). Introduction to Plant Viruses. Springer.						
CAD (Mehrotra, R.S. & Aneja, K.R. (2003). <i>An Introduction to Mycology</i> . New Age International.							
e A	6	Rangaswami, G. & Mahadevan, A. (2001). Diseases of Crop Plants in India. PHI.						
r of Fi	7	Sanjeev Kumar 2021. Fundamentals of Plant Pathology. ISBN: 9789390591206. New India Publishing Agency.						
y Orde	8	Tripathi S K, Bhale M S, Yadav V K and A Srivastava, 2024. Fundamentals of Plant Pathology. Asha Book House.						
ersit	9	https://bio.libretexts.org/						
ive	10	https://www.apsnet.org/edcenter/Pages/IntroOomycetes.aspx?utm_source						
		https://plantlet.org/an-overview-of-oomycetes/?utm_source						

CHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT

discussion	>	Practical sessions with
Field visits		demonstrations and hands on
		experiences

ASSES	SMENT RUBRICS		Marks
	emester Evaluation ESE		
•	Theory Examination		50
•	Practical Examination		15
Contin	uous Comprehensive Assessment CCA		
•	Examinations (multiple choice, true-false and critical thinking questions)	, fill-in-the-blank, matching, short answer	10
•	Writing assignment		5
•	Presentations and Viva Voce		5
•	Practical Records, Reports and submission	s by students	5
•	Internal Practical Examination		10

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course provides an engaging and comprehensive introduction to the study of fungi and plant diseases. Through handson learning and scientific observation, students will develop analytical and diagnostic mycology, plant pathology, agriculture, biotechnology, and environmental sciences. On learning and scientific observation, students will develop analytical and diagnostic skills essential for careers in

9 DSC	Bio-instrume	KU5DSCPLS302	
) SC	Semester: 5	Hrs/week: 4 Theory + 0 practical	Credits: 4

- Knowledge in Biology at 201-299 level
- Ability to write examination in English

Course	Course Outcomes				
CO1	Define and explain the role of bioinstrumentation in life science research.				
0CO 2	Understand core principles like accuracy, sensitivity, and signal detection.				
CO3	Explain the optical and chemical principles that underpin commonly used lab instruments				
CO4	Use computers for data acquisition, monitoring, and control, and implement software solutions.				
CO5	Recognize the importance of calibration, data integrity, and lab safety in using bio instruments				

Mapping of Course Outcomes to PSOs/POs

4DE	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
€CO1	V				V							
⊬CO2		V	V		V							
⊵соз	V						√					
<u>S</u> CO4		V	V					√				
UCO5	V								V		V	

Course Description

This is an introductory biology course designed for UG students in general and BSc Botany and Plant Science in particular. This course introduces the principles and applications of instrumentation systems and their integration with computer technologies.

- First module is dealing with the fundamental principles of bioinstrumentation and laboratory safety protocols.
- Second module provides an outline on basic optical instruments -microscopes, colorimeter and spectrophotometer used in biology and biochemistry.
- Basics on chemistry of buffers, principle and working of pH meter and separation techniques useful in biology are focussed in third module of this course.
- Fourth module is an introduction to the world of computers.

This course will provide opportunities to visit well equipped labs in biology and will get first hand experience in the laboratory with the available equipment.

- 1. Understand the basic operating principles of commonly used scientific laboratory instruments such as autoclaves, spectrophotometers, centrifuges, microscopes, and incubators etc.
- 2. Develop skills in the safe handling, maintenance, and calibration of laboratory equipment.
- 3. Recognize the importance of accurate measurement and data collection in scientific experiments.
- 4. Gain foundational knowledge of computers, including hardware components, operating systems, and basic software applications used in laboratories.
- Inderstand how laboratory instruments interface with computers for tasks such as data logging, automated ontrol, and result interpretation.

Credit		Teaching Hours		Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total

4	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100
---	---	---	------------------------	---	----	----	-----

COURSE CONTENT

Module 1: Fundamentals of Bioinstrumentation and laboratory safety 12 Hrs

- 1.1 Bioinstrumentation: Definition, scope, and relevance in biology and research. Introduction to Instrument Maintenance- Handling and care of glassware and electronics, Storage practices, cleaning protocols, Savoiding contamination.
- \$1.2. Measurement Principles: Accuracy, precision, sensitivity, specificity and resolution. Calibration and Standardization: Importance of calibration, standard operating procedures, reference standards. Biological prelevance of physical quantities, Common units in bioinstrumentation.
- 1.3. Electronic, Electromagnetic and Electrical Principles: Signal Detection and Processing: Biological signals, signal amplification, noise reduction. Transducers and Their Applications: Types of transducers, biological to electrical signal conversion. Optical Principles in Instruments: Light absorption, reflection, refraction, Beer-Lambert law
- 1.4. Laboratory Safety and Biosafety- General lab safety chemical, electrical, biological. UNESCO guidelines on lab safety practices. Biosafety levels (BSL I–IV), personal protective equipment (PPE), waste disposal.

Module 2: Optical instruments 12hrs

- 2.1. General classification of microscopes, Parts and working principle of a compound microscope. Magnification, resolution, and contrast. Lens types: Objective and ocular basic functions. Phase contrast Microscopy.
- 52.2. Electron microscopy. Parts, Principles and steps in TEM and SEM. Comparative account of image equality and applications of LM with TEM and SEM.
- 2. 3. Comparative account of sample processing for LM, TEM and SEM. Sample Preparation Techniques—Hand sectioning and microtome sectioning. Embedding. Staining techniques common stains (safranin, iodine, acetocarmine, Osmium tetroxide). Mounting media and methods.
- 2.4. Analytical Instruments- Colorimeter parts, working principle, biological applications. Spectrophotometer types, working and uses. Comparison of spectrophotometer and Colorimeter.

Module 3: pH meter and Separation techniques 12 Hrs

- 3.1. pH and Buffers- pH: definition, importance in biological systems, Working of a pH meter, calibration. Buffers used in pH meter. Role of buffers in living organisms and biological research.
- 3.2. Centrifugation principle, types (simple table top, differential, high speed and refrigerated), protocol for the separation of chemicals- DNA and proteins, and cell organelles.
- 3.3.Chromatography— principle, types and applications of paper chromatography, thin-layer chromatography (TLC) and HPLC.
- 3.4. Electrophoresis—principle, types and applications of Agarose gel electrophoresis, principles

Module 4. Computer as a tool for biological study 12 hrs

- 4.1. Fundamentals of Computer: Characteristics. Generations of Computers. Parts of a personal computer—Hardwares: main components- CPU, ROM, RAM, HDD/SSD, input/output devices. Soft wares: Overview of Operating Systems- DOS, Microsoft, Linux. Graphical User Interface GUI.
- 4.2. Networking and Wireless Technology- Networking and Wireless Technology, Local area networks (LAN), wide area networks (WAN). Internet Access Methods Dial up, Cable TV, Satellite, Wi-Fi, Ellustooth, mobile data in data sharing and collaboration.
- plication software: Word processors, spreadsheets (Excel), presentation tools (PowerPoint). Tools pgy: Graphing tools, statistical packages (SPSS, R programming), data analysis platforms.
- ital Literacy in Research- Use of internet in literature review and data collection. Online databases: NCBI, PubMed, Science Direct. Biodiversity databases. Referencing and plagiarism checking tools. AI tools relevant to botanical research.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Microtechnique, microscopic phot and video documentation, Any programmes softwares useful for students. Basics of computer in Biostatistics, graphs and Charts and statistical tools.

Practical 7 Hrs

ACADEMIC) on 19-Dec-2025

REGISTRA

þ

- 1. Demonstration of Paper Chromatography/TLC
- 2. Spectrophotmetric analysis/ Colorimetric analysis
- 3. Use of pH meter and colorimeter
- 4. Microscope handling and slide preparation.
- 5. Diagrams and photographs of instruments for identification
- 6. Preparation of presentations and graphs using computer
- 7. Diagrams and photographs of I/O devices for identification

Suggested Assignment Topics- Theory

- 1. Types of Light microscopy techniques- bright field/ darkfield/ fluorescence
- 2. Various centrifugation protocols for isolation of cell organelles and inclusions
- 3. Microtechniques using microtome
- 4. Staining techniques in microscopy

Suggested Assignment Topics- Practical

- 1. Microscopic staining techniques
- 2. Microtechnique
- 3. PH Meter and water analysis
- 4. Qualitative and quantitative analysis using Spectrophotometer
- 5. Demonstration of electrophoresis
- 6. Various centrifucation techniques

SI. N	Title/Author/Publishers of the Book specific to the module
31.1	1
Alan Evans, Kendal Martin et al., Technology in Action, Pearson Prentice H.	
/21	edn.).
<u>ප</u> 2	Alexis Leon & Mathews Leon, Computers Today, Leon Vikas.
2	Bajpai, P.K. (2008). Biological instrumentation and methodology, S. Chand and
S 3	company Ltd, .New Delhi.
0 4	Casey E. J Biophysics - Concepts and Mechanics Van Nostrand Reinhold Company.
AD r	Galen .W. Ewing - Instrumental methods of chemical analysis Mc - Graw Hill Book
V 5	Company.
ile	Ghosal S and A S Avasthi, 2023. Fundamentals of Bioanalytical Techniques and
Instrumentation. Prentice Hall India Learning Pvt Ltd.	
7 Order	Cytochemistry.
	Peter Norton, Introduction to Computers, 6th edn., (Indian Adapted Edition).
versity 8	Satish Chandra and Gyanendra Kumar, 2023. Bio-Instrumentation and Biological
.≧ 9	Techniques, PK Publishers and Distributors.
	Seidman L A, M E Kraus and D L Brandner, 2022. Laboratory Manual for
	Biotechnology and Laboratory Science, ISBN 13 9781032419916, Taylor and Francis
	Ltd.

	S	ر
	ď	2
(1
	j)
(J)
4		
	_	
	5	5
	_	•
1	_	
(_)
	=	
	2	2
į	ī	J
7	=	
(-)
<	◁	1
()
Ì	3	-
	2	ì
	Y	ì
۵	7	_
<	1	
۵	v	2
	r	
ŀ	Z	
(Ť,)
7	1	7
١	· [)
L	Ţ	
ĺ	6	,
6	1	
ì	>	
ĺ		_
-	_	,
7	7	
٥		
L	1	
(١
	_	
	J	?
	•	2
-	7	3
	ă	5
	Š	5
	Ć	5
	Š	
		2
		2
<	q	
	4	
	Ň	ļ
1		
(-	4
(ė	ì
(e	
((()))	ę	
((()))	(e)	
	· e	
000000		
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
(
0		
(1 (1 / / / / 1	
(
(1 (1 / / / / 1	
0	1 (1 / / / / 1	
((()	1 (1 / / / / 1	
(1 (1 / / / / 1	
	1 (1 / / / / 1	
((()) [./\Z(.\Z\) [.\Z\/.\] [
) [./\Z(.\Z\) [.\Z\/.\] [
000000000000000000000000000000000000000) [./\Z(.\Z\) [.\Z\/.\] [
	1 (1 / / / / 1	
000000000000000000000000000000000000000		
000000000000000000000000000000000000000		
) [./\Z(.\Z\) [.\Z\/.\] [
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		
(() (() () () () () () () () () () () ()		

Hands-on experiments
Collaborative learning-G

Collaborative learning-Group discussion

➤ Lab visit

c-2025 04:56 PM - Page 67

Demonstrations

1	T .	•
\rightarrow	Lecti	irino
_	LCCII	11 III <u>S</u>

> ICT

Practical sessions with demonstrations and hands on experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	5
Practical examination	10

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Fraduates will be equipped with the theoretical and practical knowledge in bioinstrumentation that will help to attain research competence needed to get job in academia, industry, and government sectors.

10	Basics in M	olecular biology and Genetics	KU5DSCPLS303
DSC	Semester: 5	Hrs/week: 4 Theory + 0 practical	Credits: 4

- 1. Knowledge in Biology at 201-299 level
- 2. Ability to write examination in English

Course O	Outcomes
CO1	Explain the molecular basis of genetic information by understanding the structure and function of DNA.
CO2	Describe the processes of gene expression and regulation in a stepwise manner starting from transcription to protein folding.
CO3	Analyze genetic variation and inheritance patterns
CO4	Understand chromosomal and molecular mechanisms underlying sex determination and genetic disorders
CO5	Evaluate the impact of mutations and DNA repair mechanisms on genome stability

Mapping of Course Outcomes to PSOs/Pos

REG	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
⊵CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$						
СО3							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
≧ CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	
©CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This biology course designed to provide a foundational understanding of molecular biology and classical & human genetics, with a focus on how molecular events influence phenotypic traits and genetic disorders.

- First module is dealing with the basics of molecular biology structure of DNA and RNA, DNA replication in prokaryotes and eukaryotes.
- Second module delves into the molecular mechanisms in the central dogma, from transcription to protein folding.
- Third module is enlisting the molecular basis of mutation and basis of sex determination in plants and organisms including man.
- Fourth module focusses on the human genetics to get a comprehensive idea on human traits, diseases and syndromes and cancer.

This course will provide an opportunity to get a strong conceptual foundation on the interrelationship of molecular biology, biochemistry and genetics.

Pemonstrate an understanding of the molecular structure of DNA and explain the experimental evidence ipporting its role as the genetic material.

escribe the mechanisms of gene expression and regulation, including transcription, translation, and the unctional roles of different RNA types in prokaryotic and eukaryotic systems.

- 3. Apply Mendelian and non-Mendelian principles to analyze patterns of inheritance, including sex-linked traits, extranuclear inheritance, and gene mapping through linkage and recombination.
- 4. Explain the genetic and chromosomal mechanisms of sex determination and identify the genetic basis of common human syndromes and disorders, including those related to cancer.
- 5. Analyze the causes and consequences of mutations and describe cellular mechanisms for DNA repair and their role in maintaining genome stability.

5 04:	Credit	į	Teaching 1	Hours	Assessment			
%L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
99-DeG	0	4	4+ 0+ 0 (45+ 0 + 0)	4	30	70	100	

COURSE CONTENT

Module 1: Introduction to Molecular Biology 8 hrs

- 51.1. History of Molecular Biology. Evidences DNA as genetic material: Griffith, Avery-McLeod–McCarty experiments.
- 1.2. DNA and Genes: Watson-Crick model of DNA. Chargaff's rules and DNA forms: A, B, C, D and Z. Concept of gene: Cistron, recon, muton.
- 1.3. DNA replication: Mechanism, enzymes, types (semi-conservative, rolling circle). Comparison between Prokaryote and Eukaryote DNA replication.
- 1.4. One gene-one enzyme/polypeptide hypotheses. Introns, exons, and mobile genetic elements (transposons). Genetic code: Features, codon–anticodon relationship.

Module 2: Gene Expression and Central Dogma 15 hrs

- 2.1. Transcription: Mechanism (initiation, elongation, termination) Post-transcriptional modification: Capping, polyadenylation, splicing.
- 2.2. RNA types: Structure and function of mRNA, tRNA, rRNA
- 2.3. Translation: Protein synthesis mechanisms (initiation to termination) Post-translational modifications (brief)
- 2.4. Regulation of central dogma in Prokaryotes Operon concept lac and trp operons. Regulation in Eukaryotes Chromatin- states (active/inactive), promoter function.

Module 3: Molecular basis of mutation and Sex determination 15 hrs

- 3.1. Mutation. Definition and History. Types of mutagens: Chemical and physical. Significance of mutation in evolution
- 3.2. Types of Mutations and Mechanisms: Transition, transversion, frameshift mutations. Molecular basis: Tautomeric shift, alkylating agents, base analogues. DNA repair mechanismsbrief overview.
- 3.3. Concept of Genes from factors to the modern concept of gene. Role of chromosomes in inheritance and its significance. Extra-chromosomal inheritance: Four o'clock plant (variegation), Poky in Neurospora.
- 3.4. Sex Determination and Genetics- Theories of sex determination: Chromosome theory 5(Grasshopper, Man, Drosophila). Genic balance theory, Dosage compensation, Lyon phypothesis. Sex determination in plants (Melandrium, Dioscorea, Sphaerocarpus). Sex-linked Sinheritance: X-linked (e.g., eye color in Drosophila), Y-linked inheritance. Sex-limited and sexinfluenced traits.

Module 4. Human Genetics and Genomic Applications 10 hrs

- 1 Haman Genetics and Traits: Mendelian inheritance in humans, Blood groups (ABO and antitative traits: Skin color, IQ.
 - etic disorders: Hemophilia, chromosomal syndromes- Down, Turner, Klinefelter, Cri-
- 4.3. Genetics of Cancer. Features of cancer cells. Genetic basis of carcinogenesis- oncogenes and Tumour suppressor genes. Oncogenes vs tumor suppressor genes.

4.4. Human Genome Project: Scope, objectives, impact

Module 5. TEACH SPACE

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Chromosome Mapping (5 hrs)

- Linkage: Complete (Drosophila) vs Incomplete (Maize)
- Independent assortment vs linkage
- Mechanism of crossing over, cytological evidence
- Gene mapping: Two-point and three-point test crosses
- Interference and coincidence

Practical 7 Hrs

- 1. Mapping of genes- two point and three point test cross
- 2. Pedigree analysis of human diseases
- 3. Knowing the basic Human Genome through websites
- 4. Molecular biology problems mutation and cancer

Suggested Assignment Topics- Theory 1. Molecular basis in diagnosis for c 2. Molecular level treatments 3. Membrane molecular biology and 4. Genetic basis of gender and impact

- Molecular basis in diagnosis for cancer and syndromes
- 3. Membrane molecular biology and diseases
- 4. Genetic basis of gender and impact of epigenetics

Suggested Assignment Topics- Practical

- Display of Videos on cancer, HGP, Plant genome projects
- Visit to molecular biology institutions to know the tools and techniques in the area.
- 3. Practicing referring scientific journals and magazines

/ed									
0	Sl. No	Title/Author/Publishers of the Book specific to the module							
App	1	Acquaah, G. (2007). Principles of Plant Genetics and Breeding. Blackwell Publishing Ltd. USA.							
4 /	2	Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2010). Essential Cell							
202	2	Biology. Garland Science.							
/090	3	Allison, L. (2007). Fundamental Molecular Biology. Blackwell Publishing Co. Carroll, S.B.							
10	,	(2004). From DNA to Diversity. Blackwell Publishing Co.							
3/2	4	De Robertis, E.D.P. & De Robertis, E.M.F. (1987). Cell and Molecular Biology. Lea &							
C	'	Febiger.							
Άľ		Glick, B.R. & Thompson, J.E. (1993). Methods in Plant Molecular Biology and							
AC	5	Biotechnology. Promega. Hartwell, L.H., Hood, L., Goldberg, M.L., Reynolds, A.E., Silver,							
C		L.M. & Veres, R.C. (2006). Genetics – From Genes to Genomes (3rd ed.). McGraw Hill.							
ΆΓ	6	https://assets.vmou.ac.in/MBO08.pdf							
AC	7	https://dpbck.ac.in/wp-content/uploads/2022/09/Cell-Biology-Verma-and-Agarwal.pdf							
ile	8	https://wisdompress.co.in/wp-content/uploads/2023/10/A-Textbook-of-Human-Genetics.pdf							
of F	9	https://www.researchgate.net/publication/373921396_7_Molecular_Biology_and_Human_Ge							
er (,	netics An Overview							
Ord		Janet, L. & Wallaca, M. (2017). Karp's Cell and Molecular Biology. John Wiley and Sons							
Ç ≱	10	Inc. Karp, G. (2004). Cell and Molecular Biology: Concepts and Experiments (4th ed.).							
versity		Wiley.							
ive	11	Krebs, J.E., Goldstein, E.S., & Kilpatrick, S.T. (2018). Lewin's Genes XII. Jones and Bartlett							
		Learning. Lewin, B. (2008). Genes IX. Jones and Bartlett Publishers.							
3		Lodish, H., Berk, A., Kaiser, C.A. & Kreiger, M. (2012). Molecular Cell Biology (7th ed.).							
		W.H. Freeman.							
. ا	13	Morris, K.V. (2008). RNA and the Regulation of Gene Expression: A Hidden Layer of							
		Complexity. Caister Academic Press.							
	14	Pon, L.A. & Schon, E.A. (2001). Mitochondria. Academic Press. Scicchitano, D. (1998).							

	Molecular Cell Biology. W. H. Freeman & Co.
15	Turner, B.M. (2002). Chromatin and Gene Regulation. Blackwell Publishing Co. Weaver, R.F.
13	(2008). Molecular Biology. McGraw Hill.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Journals and websites	demonstrations and hands on
Bioinformatic databases	experiences

		MODE OF TRANSACTION	
	TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION	
	Hands-on experiments	> Lecturing	
	 Collaborative learning-Group 	> ICT	
	discussion	Practical sessions with	
	Journals and websites	demonstrations and hands on	
	Bioinformatic databases	experiences	
. ~ -			
ASS	ESSMENT RUBRICS		Marks
	ESSMENT RUBRICS Semester Evaluation ESE		Marks
			Marks 50
End •	Semester Evaluation ESE		
End • Con	Semester Evaluation ESE University Examination	fill-in-the-blank, matching, short answer	
End • Con	Semester Evaluation ESE University Examination tinuous Comprehensive Assessment CCA Examinations (multiple choice, true-false, false)	fill-in-the-blank, matching, short answer	50

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):
44 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course induces the student to gather more knowled econsequently moves to the field of biological research. This course induces the student to gather more knowledge and skill in the field of molecular biology, genetics and

11		Phytochemistry	KU5DSCPLS304		
DSC	Semester: 5	Semester: 5 Hrs/week: 3 Theory + 1 practical			

- 1. Knowledge in Biology at 201-299 level
- 2. Ability to write examination in English

Course	Outcomes								
CO1	Ability to identify and classify major biomolecules and their plant functions								
CO2	Understands structural and functional aspects of proteins and lipids								
CO3	Correlates biomolecular structure to their biological roles								
CO4	Understands energy flow in biological systems								
CO5	Analyze enzyme function, classification, and regulation								
CO6	Apply principles of enzyme kinetics to biological reactions								

Mapping of Course Outcomes to PSOs/Pos

ΥR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
ECO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
⊵CO3							\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
©CO4				$\sqrt{}$	\checkmark			~	\checkmark	\checkmark	\checkmark	
©CO5									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
₹CO6										V	V	$\sqrt{}$

Course Description

This is a course designed to provide a foundational understanding of structure and functional role of various biochemical compounds and thereby understanding the phytochemical basis of plant structure, function, and secondary metabolite production, including recent developments in plant biochemistry.

- First module is dealing with bioenergetics, enzyme kinetics and buffer chemistry that helps to make an interest in biochemistry.
- Second module is helping the student to get more vision on the basic chemicals of organisms- carbohydrates, proteins and lipids.
- Third module is a voyage to the knowledge field of phytohormones, secondary metabolites and phytotoxins.
- Fourth module delves into the field of modern applications of phytochemistry

This course will provide opportunities to get a firsthand experience in qualitative and quantitative assessment of phytochemicals.

Objectives:

- o gather the basic knowledge in phytochemistry that helps to make a conceptual basis on plant metabolism. o apply phytochemical knowledge to plant-based health applications.
- o understand the link between plant metabolism and environmental adaptation and evolution.
- 4. To appreciate the value of traditional knowledge in modern science.

Credit			Teaching H	lours		Assessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3+ 0+ 2 (45+ 0 + 30)	5	25	50	75

20 Hours

Module 1: Concepts in bioenergetics, buffers and enzymology 15 Hours

- E1.1. Bioenergetics: Laws of Thermodynamics in biological systems. Gibbs free energy, Gendergonic and exergonic reactions. High-energy compounds: ATP, NADPH, FADH₂, FMN structure and function. Emphasis on ATP as the universal energy currency
- 1.2. Acid and Bases, ionisation of water, dissociation of acids, Henderson-Hasselbalch equation, pKa. Buffers Common buffers (acetate, citrate and phosphate), buffer action, buffer capacity
- 1.3. Principles of Enzymology Enzyme classification (IUBMB system). Enzyme kinetics, Michaelis-Menten constant-, Km and Vmax. Lineweaver-Burk plot. Mechanism of Eenzyme action: Lock-and-key, Induced-fit models. Factors affecting enzyme activity: Temperature, pH, substrate concentration. Types of enzyme inhibition: Competitive, non-competitive, uncompetitive. Allosteric regulation and feedback inhibition. substrate specificity and regulation of enzyme activity.
- 1.4. Structure and classification of Enzymes: Active sites and inhibitors, Apoenzymes and holoenzymes. Coenzymes and cofactors. Endo- and exoenzymes, constitutive and inducible enzymes. Multienzyme, isoenzymes, zymogens, ribozyme, abzyme. Detailed estudy of structure and function of FAS and Rubisco.

Module 2: Carbohydrates. Lipids and Proteins

- 2.1. Basics of biochemistry: History, Significance of Biochemistry and Biomolecules. Indian contributors- Ramachandran, Bhargava.
- 2.2. Carbohydrates: General structure linear and ring structures. Major bonds in carbohydrates and their properties. Classification of carbohydrates- Monosaccharides (triose, pentose, hexose). Examples: Glyceraldehyde, ribose, deoxyribose, glucose, fructose. Disaccharides: Maltose, lactose, sucrose. Polysaccharides: Starch, cellulose, glycogen. Biological roles of carbohydrates in plants.
- 2.3. Lipids: Classification: Simple (fats, oils), complex (phospholipids, glycolipids). Storage and structural lipids. Membrane lipids: phospholipids, sterols. Functions in energy storage, signaling, membrane structure
- 2.4. Proteins and Amino Acids: Classification of amino acids (based on polarity, charge). Proteinogenic vs non-proteinogenic amino acids. Protein structure: Primary, secondary, tertiary, quaternary. Protein folding, denaturation and renaturation. Classification based on Efunction (enzymes, storage, structural, transport).

Module 3: Phytohormones, Secondary metabolites and phytotoxins 15 Hrs

- ©3.1. Phytohormones: Structure and physiological roles of Auxin, Gibberellins, Cytokinin, EAbscisic acid and Ethylene.
- ondary Metabolites in Plants: Definition and importance of secondary metabolites.
 e, properties and classification of Alkaloids, phenolics, flavonoids, terpenoids, saponins, glycosides. Role in plant defense, pigmentation, allelopathy, symbiosis.
- Ecological and evolutionary significance
 3.3. Phytochemical Analysis Techniques: Extraction methods: Solvent extraction,

phytochemical distillation, Soxhlet, maceration. Preliminary screening Chromatography techniques: column chromatography. Spectrophotometry in compound identification

3.4. Poisons from plants: Alkaloids (e.g., atropine), Glycosides (e.g., cyanogenic glycosides), Proteins and peptides (e.g., ricin), Oxalates, resins, saponins. Major poisonous plants and their toxins: Ricinus communis, Nerium oleander, Abrus precatorius, Datura Sstramonium and Thevetia peruviana.

Module 4. Applied Plant Biochemistry 10 hrs

- \$4.1. Ethnobotany and Traditional Knowledge Systems. Role of traditional medicine and plant-based remedies. Integration of ethnopharmacology with modern phytochemistry
- 4.2. Plant Biochemistry and Human Health. Examples and roles for the following Sapplications: Nutraceuticals and functional foods. Antioxidant compounds in plants (flavonoids, polyphenols). Phytochemicals in anti-inflammatory, anti-cancer, and antimicrobial activity.
- 4.3. Plant-Environment Interactions: Role of phytochemicals in abiotic stress tolerance (UV, salinity, drought). Allelopathy and plant defense compounds.
- 4.4. Recent Advances in Phytochemistry: Role of metabolomics in plant biochemistry. Bioprospecting of medicinal plants for drug discovery. CRISPR and metabolic engineering of secondary metabolite pathways. Synthetic biology approaches to plant natural product production.

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Application of various phytochemicals in daily life. Medicines from plants. Dyes from plants. Tannin and resin yielding plants of our locality. Natural fibres from plants and their physico- chemical properties and significance.

Practical 10 Hrs

- 1. Qualitative tests for carbohydres polysaccharides), proteins and lip 2. Qualitative tests for secondary m 3. Spectrophotometry for the quasugars, non reducing sugars and suggested Assignment Topics- Theory 1. Qualitative tests for carbohydrates (reducing sugars, non reducing sugars and polysaccharides), proteins and lipids
 - 2. Qualitative tests for secondary metabolites -alkaloids, tannins, saponins, phenolics
 - 3. Spectrophotometry for the quantitative assessment of carbohydrates (reducing sugars, non reducing sugars and polysaccharides), proteins and lipids.

- Treatment of plant resources for various purposes- paper making, plywood making,
- Temperature treatment of woods and canes for furniture making
- 3. Various phytochemical analysis methods relevant to industrial and research exposure.

- 1. Industrial visit to the industry- plywood factory, paper factory
- Suggested Assignment Topics- Practical

 1. Industrial visit to the industry- plyw

 2. Study visits to physiology and bioc
 the field of phytochemistry Study visits to physiology and biochemistry labs of universities and research institutes to get exposure in the field of phytochemistry.

Ord	Sl. No	Title/Author/Publishers of the Book specific to the module
.≥	1	Attri L K and V C Chandel, Fundamentals of Plant Biochemistry, New Delhi
ersity	1	Publishers. ISBN NO:9789393878137.
.≧	*CONTROL	Beck, CB. (2005). An introduction to plant structure and development. Cambridge
		University Press.
		Berg, J.M., Tymoczko, J.L. & Stryer, L. (2006). Biochemistry (6th ed.). W. H.
Õ		Freeman & Co.
	4	Bewley, J.D. & Black, M. (1994). Seeds: Physiology of development and
	4	germination (2nd ed.). Plenum Publishing Corporation.

	5	Bharadwaj R and P Chowdhury, 2023. Plant Secondary Metabolites. Agrobios.
2	6	Bidwell, R.G.S. (1979). Plant physiology (2nd ed.). Macmillan Publishing
Page 75		Corporation.
- 1	7	Boopathi C A, 2021. Medicinal and Poisonous plants of India. MJP Publisher. ISBN-10: 8180942856; ISBN-13: 978-8180942853.
56 P№	8	Buchanan, B.B., Gruissem, W. & Jones, R.L. (2000). Biochemistry and molecular biology of plants. American Society of Plant Biologists.
Dec-2025 04:56 PM	9	Caius, J F, 1986. Medicinal and Poisonous Plants of India. White Lotus books, Jodhpur.
Dec-20	10	Daniel, M. (1989). Basic biophysics for biologists. Agro-Botanica Publishers and Distributors.
on 19-[11	Davies, P. J. (2004). Plant hormones: Biosynthesis, signal transduction, action (3rd ed.). Kluwer Academic Publishers.
DEMIC)	12	https://bsi.gov.in/uploads/documents/Public_Information/publication/books/miscellaneous/Selected%20Poisonous%20Plants%20from%20the%20Tribal%20Areas%20of%20India_pdf
(ACA	13	https://www.cambridge.org/core/books/abs/plant-physiology/secondary-plant-metabolites/B108DB3F91D16CA2C546287B852FD033
STRAR	14	Nagaraj G, 2022. Principles of Plant Biochemistry, Narendra Publishing House. ISBN: 9789390611805
REGIS	15	Sharma A. K., Sharma A., (2022). Plant secondary metabolites. Singapore: Springer.
PUTY	16	Taiz, L. & Zeiger, E. (2002). Plant physiology. The Benjamin Cummings Publishing Corporation.
Approved by DEPU	17	Twaij B M and Hasan M N, 2022. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses; <i>Int. J. Plant Biol.</i> 2022, <i>I3</i> (1), 4-14; https://doi.org/10.3390/ijpb13010003 (https://www.mdpi.com/2037-0164/13/1/3)
	18	Upadhay, A., Upadhay, K. & Nath, N. (2008). Biophysical chemistry: Principles and techniques. Himalaya Publishing House.
202	19	Voet, D.J. & Voet, J.J. (2005). Biochemistry (5th ed.). John Wiley & Sons.
21060/2024	20	Wilkins, M.B. (1984). Advances in plant physiology. Longman Scientific & Technical.
. 1		

TEACHING LEARNING	MODE OF TRANSACTION
STRATEGIES	
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with demonstrations
Industrial and institute visit	and hands on experiences

T	TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION	
> C	Hands-on experiments Collaborative learning-Group discussion ndustrial and institute visit	 Lecturing ICT Practical sessions with demonstrations and hands on experiences 	
ASSES	SSMENT RUBRICS		Mai
End Se	emester Evaluation ESE		
•	University Examination		50
Cantin	uous Comprehensive Assessm	ent CCA	
Contin	<u> </u>	e, true-false, fill-in-the-blank, matching, short answer	10
Contin	Examinations (multiple choice	e, true-false, fill-in-the-blank, matching, short answer	10

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Applying and Analyzing).

Marks Questions (Evaluating and Creating):

Marks Questions (Evaluating and Creating):

Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Employability for the Course / Programme
The experiential learning results in a lineage towards the utilisation of ethnobotanical knowledge for the innovative efforts of industry and research.

Programme
The experiential learning results in a lineage towards the utilisation of ethnobotanical knowledge for the innovative efforts of industry and research.

Programme
The experiential learning results in a lineage towards the utilisation of ethnobotanical knowledge for the innovative efforts of industry and research.

12	Pla	ntation Management	KU65DSEPLS305
DSE	Semester: 5	Hrs/week: 4 Theory + 0 practical	Credits: 4

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course O	Course Outcomes						
CO1	Apply basic principles of farm management and select appropriate machinery for plantation operations.						
CO2	Demonstrate understanding of HR practices, leadership, and labour relations in plantation settings.						
CO3	Analyze economic aspects and growth factors of plantation crops in Kerala and India.						
CO4	Identify and interpret key legal provisions relevant to plantation labour and management.						
CO5	Perform practical tasks through field visits and activities related to farm and workforce management.						

Mapping of Course Outcomes to PSOs/Pos

ISI	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1		$\sqrt{}$	$\sqrt{}$									
⊵CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$				
Есоз						\checkmark						
¦co4									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
.≧CO5									V			

Course Description

This course introduces the fundamental concepts of farm management, human resource practices, plantation economics, and legal frameworks relevant to the plantation sector. It also includes practical sessions aimed at experiential learning.

- The first module focuses on the principles of farm planning and budgeting, with an emphasis on machinery used in plantation crop management.
- The second module explores human resource management, covering recruitment, training, leadership, communication, and labour relations in plantation settings.
- The third module deals with the economic significance of plantation crops, highlighting productivity issues, market dynamics, and the plantation sector's role in Kerala's economy.
- The fourth module explains key labour laws governing plantation work, emphasizing worker welfare, safety, wages, and benefits.

This course helps learners understand the integrated approach required in managing plantations efficiently, blending agricultural practices with human, economic, and legal considerations and also provides hands-on learning through field visits, equipment demonstrations, leadership activities, and documentation exercises.

To understand the principles of farm management, planning, budgeting, and use of machinery in plantation crops.

- 2. To learn the basics of human resource management, including recruitment, training, leadership, and labour relations in plantations.
- 3. To explore the economic importance of plantation crops and factors influencing their productivity and sustainability.
- 4. To gain knowledge of legal provisions and labour laws relevant to the plantation sector.
- 5. To develop practical skills through field visits and activities related to plantation management and workforce engagement.

Credit Credit			Teaching H	ours		Assessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
1 -61 u	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module 1: Farm Management and Machinery 12 Hours

- \$1.1. Introduction to Farm Management: Definition, scope, and importance. Principles of farm management: Efficiency, profitability, sustainability. Functions: Planning, organizing, directing, controlling.
- 1.2. Plantation Crop Planning: Cultivation planning and budgeting for major Kerala plantation Gcrops: Tea, Coffee, Rubber, Cocnut, Arecanut, Black Pepper. Use of enterprise budgeting and partial budgeting. Crop calendars and intercropping strategies.
- -1.3. Farm Machinery and Equipment: Weed cutters: Manual, motorized types. Sprayers: PRocker, knapsack, power sprayers – use and safety. Dusters: Lime sulfur, sulphur-based dusting. Processing equipment: Rubber rollers and smoking units. Coconut and arecanut dehuskers.
- 51.4. Sustainable Farm Management Practices: Use of digital tools: GPS, mobile apps, plantation management software (like FarmERP). Water conservation, soil health management. Agroforestry and organic farming practices in Kerala. Environmental and economic sustainability

Module 2: Human Resource Management (12 Hours)

- 2.1. Introduction to HRM: Definition, objectives, and importance. Difference between personnel management and HRM. Challenges in plantation sector HRM
- 2.2. HR Planning and Development: Recruitment and placement in plantations. Training methods for seasonal vs permanent staff. Performance appraisal systems. Promotion and career development
- 2.3. Leadership and Communication: Leadership styles in rural/plantation settings (autocratic, democratic, etc.). Types of communication: vertical, horizontal, informal. Motivation and workforce morale in plantations.
- 2.4. Labour Relations and Conflict Management. Trade unions in Kerala plantations. Case studies – (layoff, retrenchment, and grievances) and their handling. Gender and caste issues in plantation labour.

Module 3: Economics of Plantation Crops (12 Hours)

- 53.1. Agriculture and the Economy: Role in Indian GDP, employment, rural livelihoods ELinkages between agriculture and industry.
- \$3.2. Plantation Crops in Indian Economy: National economic contribution of Tea, Coffee, Epubliar, Cashew. Post-liberalization impacts (1991 onwards). Export trends and global market
- cs. cs. cs. cs. tors Affecting Plantation Growth. Productivity issues: aging plantations, pest/disease, and machanization. Landholding fragmentation in Kerala. Input cost rise and market price volatility.
 - 3.4. Plantation Sector in Kerala: Plantation statistics: area, productivity, employment. Social

impact: tribal communities, women in plantations. Environmental impact: monocultures, deforestation. Role of Plantation Corporation of Kerala, Government Schemes, and Spice

Module 4. Legal Aspects of Plantation Management (12 Hours)

- 4.1. Plantation Labour Act, 1951: Definitions, scope. Welfare provisions: crèches, housing, medical. Working conditions, leave, overtime. Penalties, inspections, enforcement in Kerala
- 4.2. Minimum Wages Act, 1948: Wage structures in the plantation sector. Kerala-specific wage boards and notifications. Implementation and challenges.
- 34.3. Employees' State Insurance Act, 1948: ESI applicability in plantations. Benefits to workers: medical, maternity, accident. Registration and compliance mechanisms.
- 4.4. Additional Legal Frameworks: Social security schemes for unorganized plantation workers. Kerala Plantation Labour Welfare Fund Act. Occupational health and safety rules. Land ceiling laws affecting plantations in Kerala.

Module 5. TEACH SPACE

This module is a list of suggested activities that helps to achieve the aim, objectives and Coutcome of the course; which will be determined by the concerned teacher. Assessment for this Smodule is *strictly internal*.

Theory 5Hrs

Recent advances in Farm Management. IoT. Micronutrient solution supply through automated drip irrigation.

 $\frac{Q}{2}$ Various farms/plantations and associated disasters- Endosulfan issue. Mining in Plantation Lareas and associated floods and landslides.

Practical 10 Hrs

- 1. Field visit to Plantations/ farms, Layams/houses of plantation workers, etc
- 2. Internship in farms, agricultural exporting companies, Food processing units,
- 3. Documentation and report submission of visits or internships

Suggested Assignment Topics- Theory

- 1. New changes in plantation land utilisation and labour laws
- Man-wildlife conflict in plantation areas
- 1. New changes in plantation land utility
 2. Man-wildlife conflict in plantation at 3. Biodiversity of plantation areas.
 4. Exploitation of plantation laws for conflict in plantation areas.
 4. Exploitation of plantation laws for conflict in plantation areas.
 4. Exploitation of plantation laws for conflict in plantation areas.

 2. Biofencing of individual plots in laws for conflict in plantation areas.

 3. Biodiversity of plantation areas.

 4. Exploitation of plantation laws for conflict in plantation areas.

 5. Biofencing of individual plots in laws for conflict in plantation areas.

 5. Biofencing of individual plots in laws for conflict in plantation areas.

 6. Survey to find out the needs of laborated plantation areas.

 7. Biofencing of individual plots in laws for conflict in plantation areas.

 8. Biofencing of individual plots in laws for conflict in plantation areas.

 9. Biofencing of individual plots in laws for conflict in plantation areas.

 9. Biofencing of individual plots in laws for conflict in plantation areas. 4. Exploitation of plantation laws for other human enterprises

- 1. Beautification Garden making near the worker's camps
- Biofencing of individual plots in layams
- 3. Conducting survey to find out the best HRM in plantation sector
- 4. Survey to find out the needs of labourers

C	Sl. No	Title/Author/Publishers of the Book specific to the module
SAL	1	Agarwal, R.D. – Organisation and Management
) A	2	Ashwathappa, K. – Human Resource Management
of File	3	Bansil, P. C. (2015). <i>Plantation Crops: Tea, Coffee, Rubber and Cocoa (Economics of Agricultural Commodities Series)</i> . CBS Publishers & Distributors.
Order	4	Bharadwaj, K. – Production Conditions of Indian Agriculture
Q	5	Chawla, R.C. & Garg, K.C. – Mercantile Law
Sity	6	Chhabra, T.N. – Human Resource Management
ive	7 **********	Deodhar, S. B., Sankaran, S., & Punekar, S. D. (2022). Labour welfare, trade unionism and industrial relations (14th ed.). Himalaya Publishing House
2		Dhillon, W. S. (2022). Plantation Crops in India. NPH India
いい		Flippo, E. B. (1984). Personnel Management (6th ed.). McGraw-Hill.
ال	10	Government of India. (1951). The Plantations Labour Act, 1951 (Act No. 69 of 1951). Ministry of Labour & Employment.

	11	Gulshan, P. C., & Kapoor, G. K. (2024). Business Law Including Company Law (23rd ed.). New Age International (P) Ltd.
age 80	12	Heady, E. O. (1952). Economics of Agricultural Production and Resource Use. Prentice-Hall.
M - P	13	Indian Council of Agricultural Research. (2008). Handbook of Agriculture (6th rev. ed.). Directorate of Knowledge Management in Agriculture.
1:56 P	14	Indian Council of Agricultural Research. (1960). Indigenous Agricultural Implements of India: An All-India Survey. ICAR.
5 0	15	Jain, S. C. (2017). Farm Machinery: An Approach. Standard Publishers.
c-202	16	Joseph, K. J., & Viswanathan, P. K. (Eds.). (2016). Globalisation, development and plantation labour in India. Routledge.
19-De	17	Krishna, K. S. R. (1995). <i>Human Resource Management in Agriculture</i> . Discovery Publishing.
) on (18	Naik, B., Tarai, R. K., Sahoo, A. K., Sethy, B. K., & Samal, S. (2022). <i>A Textbook of Plantation Crops</i> . New India Publishing Agency.
M	19	Nair, K. R. (2006). The history of trade union movement in Kerala. Manak Publications.
CADE	20	Senthilkumar, T., Suthakar, B., & Manikandan, G. (2023). <i>A Textbook of Farm Machinery and Equipment: Principles and Practice</i> . Brillion Publishing.
AR (A	21	Venkata Ratnam, C. S., & Dhal, M. (2017). Industrial relations (1st ed.). Oxford University Press.
SISTR/	22	Venkatesa Palanichamy, N., & Parimalarangan, R. (2025). <i>Textbook on Farm Management, Production and Resource Economics</i> . Brillion Publishing.
\cdot		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Field visits and Surveys	demonstrations and hands on
•	experiences

 ► Hands-on experiments ► Collaborative learning-Group discussion ► Field visits and Surveys 	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on experiences	
ASSESSMENT RUBRICS		Mark
End Semester Evaluation ESE		
 University Examination 		50
Continuous Comprehensive Assessment C	CCA	
• Examinations (multiple choice, true and critical thinking questions)	e-false, fill-in-the-blank, matching, short answer	10
Writing assignment		5
 Reports/ presentations/ demonstrations/ 	ons by the students	10
mple Questions to test Outcomes. Marks Question (Understanding)		

Marks Questions (Evaluating and Creating):

Questions (Evaluating and Creating):

Employability for the Course / Programme

13	St	tress Physiology	KU5DSEPLS306		
DSE	Semester: 5	Hrs/week: 4 Theory + 0 practical	Credits: 4		

- 1. Knowledge in Biology at 201-299 level
- 2. Ability to write examination in English

Course Ou	Course Outcomes								
CO1	Understands the basic terms and concepts in plant stress physiology.								
CO2	Acquire knowledge in various molecular, morphological and physiological processes related with stress condition.								
CO3	Understand the physiological responses of plants towards stress								
CO4	Understand the different types of hormones and their interactions in stress.								
CO5	Learn about the application of plant stress in different field of plant science.								

Mapping of Course Outcomes to PSOs/Pos

(AC)	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	V	V	$\sqrt{}$						
[©] CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
₩CO4								$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	
_ CO5									\checkmark	$\sqrt{}$	V	$\sqrt{}$

Course Description

This course is designed for the undergraduate students who wants to develop theoretical practical knowledge in plant stress.

- First introductory module is giving an idea on the fundamental concepts in plant stress physiology along with glimpses of modern techniques.
- A deeper knowledge on abiotic stress is transacted through the theoretical session of the second module.
- Third module delves into the molecular mechanism behind the oxidative stress and hormonal and enzymatic management of the stress.
- Fourth module is designed to give more application-level knowledge on plant stress. .

This course will help the student to get a strong foundation on plant stress physiology through classrooms sessions and exposures during demonstrations and field visits.

- Understand key concepts of plant stress physiology
- Explore physiological and molecular responses to various abiotic stresses
- Learn hormonal and oxidative regulatory mechanisms
- Discover recent advances using Arabidopsis thaliana
- Apply knowledge to agricultural and biotechnological contexts

	Credit		Teaching H	ours	Assessment			
	P/I	Total	L/T/P	Total	CCA	ESE	Total	
4	0	4	4+ 0+ 0 (60+ 0+ 0) 4		30	70	100	

Module 1: Fundamentals of Plant Stress Physiology (12 Hours)

- 21.1. Introduction to Plant Stress: Definition of stress physiology. Types of stress: Abiotic vs. Biotic. Concepts: Stress vs. strain (elastic and plastic). Acclimatization vs. tolerance. Overview of stressful environments (drought, salt, cold, heat, metal, anaerobic).
- 1.2. Morphological and Physiological Adaptations: Stress avoidance and tolerance mechanisms. Examples from xerophytes, halophytes, and mesophytes. Water-use efficiency and osmotic adjustment. Leaf, root, and stomatal adaptations.
- 1.3. Methods in Stress Physiology: Growth and physiological assays (e.g., electrolyte leakage, RWC). *Arabidopsis thaliana* as a model system: Advantages, genome, stress-related mutants.
- 1.4. Modern Methods in Stress Physiology: Tools and techniques: Transcriptomics (RNA-seq), gene editing (CRISPR), Imaging tools (thermal, chlorophyll fluorescence).

-Module 2: Abiotic Stress Responses in Plants (12 Hours)

- 2.1 Water Deficit and Drought Stress: Mechanisms in xerophytes and mesophytes. Desiccation tolerance and avoidance. Molecular response in *Arabidopsis* (DREB, aquaporins). Energy balance and growth regulation
- 2.2 Salt Stress and Salinity Resistance: Salt injury and ion toxicity. Salt resistance in glycophytes and halophytes. SOS signaling pathway (*Arabidopsis*). Na⁺/H⁺ antiporters and sosmolytes.
- 2.3 Temperature Stress: Chilling vs. freezing injury. Cold acclimatization, ice nucleation, and supercooling. Heat injury and heat shock proteins. Membrane stability and lipid remodeling
- 2.4 Other Abiotic Stresses: Heavy metal toxicity: Role of phytochelatins and metallothioneins. Detoxification strategies in *Arabidopsis*. Anaerobic stress and hypoxia tolerance. ROS generation and oxidative damage.

Module 3: Stress Signaling, Hormones, and Oxidative Regulation (12 Hours)

- 3.1. Hormonal Regulation of Stress Responses: ABA as a stress signal: biosynthesis, transport, signaling. Cytokinin: antagonistic role under drought/salt. Hormonal crosstalk: ethylene, salicylic acid, jasmonates.
- 3.2. Oxidative Stress and Redox Homeostasis: Sources and roles of ROS (H₂O₂, O₂⁻). Lipid peroxidation and membrane damage. Antioxidant defense:
- 3.3. Major enzymes and scavengers: Enzymes: SOD, catalase, APX; Non-enzymatic scavengers: Ascorbate, glutathione.
- \$3.4. Molecular Signaling Pathways: Calcium signaling, MAPKs. Stress-responsive transcription factors (DREB, NAC, MYB). Gene expression modulation during abiotic stress. Use of *Arabidopsis* mutants for signaling studies.

Module 4: Agricultural and Biotechnological Applications (12 Hours)

- 4.1. Climate-Resilient Agriculture: Agronomic strategies: irrigation, mulching, soil amendments. Stress-tolerant crop varieties. Integrated stress and pest management. Role of stress physiology in climate-smart agriculture.
- 4.2. Genetic and Biotechnological Approaches: Gene discovery using *Arabidopsis*. Transgenic approaches for stress tolerance (e.g., overexpression of HSPs, ion transporters). CRISPR-based genome editing in crop improvement. Biostimulants and plant growth-promoting rhizobacteria (PGPR).
- 64.3. Case Studies: Case: Drought-tolerant rice and salt-tolerant tomato. Translational research from *Arabidopsis* to crops.
- ©4.4. Future Prospects: Role of remote sensing and drones (UAVs). Precision agriculture. Emerging trends: synthetic biology, systems biology.

5. TEACH SPACE 15 Hrs

odule is a list of suggested activities that helps to achieve the aim, objectives and of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

New researches and advancements in Stress Physiology. Stress impacts of Climate change and Disasters on major crop plants

Practical 10 Hrs

- Measurement of RWC, electrolyte leakage, stomatal index
- Salinity and drought stress induction in seedlings
- Estimation of antioxidant enzyme activity (e.g., catalase)
- Observation of *Arabidopsis* stress mutants (if available)

Suggested Assignment Topics- Theory

- 1. Survey to understand the difference in stress for various individual plants in a community
- 1. Survey to understand the difference
 2. Genes affected by stress
 3. Mitigation strategies for reducing the suggested Assignment Topics- Practical 3. Mitigation strategies for reducing the stress in crop plants

- 1. Enzyme assays of various parts of a stressed plant
- 2. Survey to find out the most susceptible crop plants to various stresses

\geq										
-	Sl. No	Title/Author/Publishers of the Book specific to the module								
(ACA	1	Aftab, T., & Hakeem, K. R. (Eds.). (2022). Plant Abiotic Stress Physiology: Volume 2: Molecular								
A	1	Advancements. Apple Academic Press.								
AR	2	Bhattacharya, A. (2017). Abiotic Stress and Physiological Process in Plants. NIPA.								
STR	3	Owivedi & Dwivedi (2005). Physiology of abotic stress in plants. Agro bios. India								
C3/21060/2024 Approved by DEPUTY REGISTRAR	4	https://sirsyedcollege.ac.in/crm/public/uploads/download_image/H8aTDrHeKuTogISO7SE1r80gjP2dmU.pdf								
П	5	https://www.icar-crida.res.in/assets/img/Books/2011-12/Abiotic_Stress_in_Plants								
EP	5	Mechanisms and Adaptations 2011.pdf								
	6	Kumar, B. Sinha. (2022). Abiotic & Biotic Stress Management in Plants: Volume I: Abiotic Stress. CRC								
q		Press (co-published with NIPA).								
Vec	7	Levitt J, 1981. Plant responses to environmental stresses (vol. I &II). Academic Press, New York & London								
pro	8	Panda S.K.(2002) Advances in Stress Physiology of Plants. Scientific Publishers, Jodhpur								
Ap	•	Rai, G. K., Kumar, R. R., & Bagati, S. (Eds.). (2021). Abiotic Stress Tolerance Mechanisms in Plants. CRC								
)24	9	Press.								
0/2	10	Rao, N. K. Srinivasa, Shivashankara, K. S., & Laxman, R. H. (Eds.). (2016). Abiotic Stress Physiology of								
06	10	Horticultural Crops. Springer India.								
3/21	4.4	Rout, G. R., & Das, A. B. (Eds.). (2022). Molecular Stress Physiology of Plants. Springer Nature.								
S	11									
AD	12	Salisbury, F. B., & Ross, C. W. (1992). <i>Plant physiology</i> (4th ed.). Wadsworth Publishing Company.								
/AC	13	Taiz, L., & Zeiger, E. (2002). <i>Plant physiology</i> (3rd ed.). Panima Publishing Corporation.								

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with demonstrations
Field visits	and hands on experiences

iversity	ASSES	SMENT RUBRICS	Marks
iver	End Se	mester Evaluation ESE	
		University Examination	50
	in	uous Comprehensive Assessment CCA	
		Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
	•	Writing assignment	5

Reports/ presentations/ demonstrations by the students 10

Sample Questions to test Outcomes. Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

Marks Questions (Evaluating and Creating):

Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Employability for the Course / Programme
The course equips the student with the conceptual understanding, technical ski modern agriculture, plant biotechnology, and environmental management.

Here agriculture agriculture agriculture, plant biotechnology, and environmental management.

Here agriculture agr The course equips the student with the conceptual understanding, technical skills, and analytical abilities required for careers

14	,	Weed Ecology	KU5DSEPLS307		
DSE	Semester: 5	Hrs/week: 4 Theory + 0practical	Credits: 4		

- 1. Knowledge in Biology at 101-199 level
- Ability to write examination in English

Course Ou	Course Outcomes						
CO1	Awareness on the ecological, biological, and economic aspects of weeds.						
CO2	Skill in identification and classification of weeds in various habitats.						
CO3	Skill in weed management practices, herbicide use, and integrated weed control approaches.						
CO4	Gather awareness on local, regional, and global weed problems and their ecological implications.						

Mapping of Course Outcomes to PSOs/Pos

STR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	
CO5									$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$

Course Description

This biology course designed for imparting knowledge on biology of weeds, their adaptive features and impacts on other flora and control measures.

- First module is dealing with fundamental knowledge on weed plants and their classification.
- *In the second module the mechanism of survival by the weed is given in detail.*
- Third module listing out various weed management strategies.
- Fourth module is giving glimpses of research and eradication programmes on major weeds of agroecosystems.

This course will provide a comprehensive knowledge of weeds, their ecology and biology along with management strategies and control measures.

- 1. Understand the biology, ecology, and reproductive strategies of weeds
- 2. Learn how weeds interfere with crops and ecosystems
- 3. Explore management strategies and prevention techniques for invasive weeds
- 4. Gain hands-on experience in weed ecology research, mapping, and policy understanding

	Credit		Teaching H	ours	Assessment			
	P/I	Total	L/T/P	Total	CCA	ESE	Total	
- T	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100	

Module 1: Fundamentals of Weed Ecology (15 Hours)

- 1.1. Introduction to Weed Ecology: Definition and characteristics of weeds. Classification of weeds annual, biennial, perennial. Difference between native and non-native (invasive) species.
- 1.2. Weed seed biology: Weed seed bank, dormancy, and germination ecology; weed indicators soil and environment. Germination phases- Environmental factors influencing emergence and survival: Light, moisture, temperature, soil nutrients. Early growth strategies for rapid scolonization.
- 1.3. Weed Reproduction and Spread: Reproductive strategies: Sexual (seeds), Asexual (rhizomes, stolons, tubers). Dispersal mechanisms: wind, water, animals, human activity. Seed bank dynamics and seed longevity.
- 1.4. Establishment of weeds- Major strategies of weeds in succession, colonization, adaptation, competition, and survival. Variation in strategies with variation in ecosystems.

Module 2: Weed Interactions and Competition (15 Hours)

- 2.1 Weed Interference with Crops: Concepts: Competition, allelopathy, parasitism. Competitive ability of common weed species.
- 2.2 Weeds and Crop Management: Economic threshold levels for weed interference. Yield closses in major crops due to weeds. Cropping systems and weed competition. Factors affecting crop—weed interactions: timing, density, resource overlap.
- 2.3 Ecological Consequences of Weeds: Impact on biodiversity and indigenous species. Effects on soil structure and nutrient cycling. Weeds as alternate hosts for pests and diseases. Disruption of native ecological processes.
- 2.4 Beneficial vs. harmful weed interactions: Beneficial aspects—soil stabilization, medicinal uses, fodder, and phytoremediation. Harmful effects on crop yield, biodiversity, forestry, fisheries, and human health.

Module 3: Weed Management Strategies and Practices (15 Hours)

- 3.1. Weed Management Techniques: Mechanical control: Tillage, mowing, hand weeding. Cultural control: Crop rotation, mulching, cover cropping. Chemical control: Herbicides types, modes of action, resistance. Biological control: Predators, pathogens, competitive plants. Integrated Weed Management (IWM) principles.
- 3.2. Invasive Weeds: Prevention and Control: Invasive weed species and their characteristics. Early detection and rapid response (EDRR). Regulatory and policy frameworks (national and international). Community involvement and education
- 3.3. Weed Mapping Techniques: Introduction to weed mapping. Methods: quadrats, transects, GPS surveys. Use of GIS and remote sensing tools for mapping invasions.
- 3.4. Weed Control- Case study: Global and Indian success stories in weed eradication and biological control programs (*Eichhornia* in aquatic ecosystems, *Senna* in forests). Balancing weed control with biodiversity conservation.

Module 4: Applied Weed Ecology and Research Methods (15 Hours)

- 4.1 Investigating Weed Ecology: Research design in weed ecology. Field survey techniques and data collection. Sampling methods: frequency, density, biomass. Monitoring population dynamics over time
- 4.2 Applications in Agroecosystems: Role of ecological understanding in sustainable weed control. Agroecological approaches to weed suppression. Climate change and future weed threats.
- Weeds in Agroecosystems: Weeds in agricultural, aquatic, and wasteland ecosystems. species in India (e.g., *Parthenium hysterophorus*, *Mikania micrantha*, *Lantana*).
- eds in Agroecosystems of Kerala: Paddy (*Echinochloa colona*, *Cyperus rotundus*), coconut (*Mimosa pudica*), banana (*Ageratum conyzoides*), and plantation crops (*Chromolaena odorata*).

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Pollinators of weeds. Major Diseases of weeds. Folk Medicines from weeds.

Practical 10 Hrs

- 1. Identification and record (Photograph) of **common weeds** from local fields, plantations, and aquatic habitats.
- Preparation of a **field-based herbarium** (minimum 5 species) with ecological notes.
- 3. Observation of seed dispersal structures (anemochory, zoochory, hydrochory).
- 4. Germination studies on selected weed seeds under varied light and soil conditions.
- 5. Demonstration of mechanical and manual weeding techniques.
- 6. Comparison of weed population and diversity in managed vs. unmanaged plots.
- Field visit to agricultural stations, Kerala Agricultural University (KAU) research plots, or local farms to study weed management practices.
- Preparation of a field report with photographs and species list (submitted as part of practical record).

- 1. Successful stories of weed control from World. India and Kerala
- 2. Various programmes for eradication of weeds- advantages and Disadvantages

Suggested Assignment Topics- Theory 1. Successful stories of weed control from 2. Various programmes for eradication 3. Diseases of weeds Suggested Assignment Topics- Practical

- 1. Internship in weed management as a volunteer of forest department
- 2. Survey on diseases of weeds
- 3. Observation on native pollinators of weeds

ove	Sl. No	Title/Author/Publishers of the Book specific to the module				
- Appr	1	Gupta, O.P. (2016). <i>Weed Management: Principles and Practices</i> . Agrobios (India), Jodhpur.				
024	2	Rao, V.S. (2000). Principles of Weed Science. Oxford & IBH Publishing, New Delhi.				
0/2	3	Tiwari, J.P. (2014). Weed Science. Rastogi Publications, Meerut.				
106	4	Subramaniyan, S. (2013). Weed Science and Management. Kalyani Publishers, Ludhiana.				
C3/2	5	Krishnamurthy, K.V. (2018). <i>Advanced Textbook on Weed Ecology</i> . Scientific Publishers, India.				
ACAL	6	Singh, H.P., Batish, D.R. & Kohli, R.K. (2006). <i>Allelopathy: Field Observations and Methodology</i> . Studium Press, New Delhi.				
ACAD C/	7	Clements, D.R. & DiTommaso, A. (2011). Ecological Basis for Weed Management in Agroecosystems. CRC Press.				
of File	8	Mohan, S. & Anitha, S. (2012). <i>Weed Management in Tropical Crops</i> . Kerala Agricultural University Press, Thrissur.				
order (9	Radosevich, S.R., Holt, J. & Ghersa, C. (2007). <i>Ecology of Weeds and Invasive Plants</i> . Wiley-Blackwell.				
ty O	. 10	Gopal, B. (2016). Aquatic Plants and Weeds: An Ecological Approach. Springer.				
iiversity	11	Sharma, G.P. (2014). <i>Invasive Weeds in the Tropics: Ecology and Management</i> . CABI Publishing.				
		Swaminathan, M.S. & Kochhar, S.L. (2019). <i>Environmental Studies: From Crisis to Cure</i> . McGraw-Hill.				

`_
\leq
0
$\widehat{\circ}$
\cong
\leq
ш
Q
Z
O
ã
_
ď
3
2
一
Ś
<u>6</u>
Ÿ
Щ
മ
<u></u>
₫
二
ر
ഥ
أبلا
₫
_
\geq
0
$\overline{}$
Ď
$\overline{}$
0
苯
7
7
4
Ñ
0
S
· ·
30/2
· ·
· ·
· ·
· ·
· ·
· ·
C3/21060/
D C3/21060/
C3/21060/
D C3/21060/
D C3/21060/
D C3/21060/
D C3/21060/
C/ACAD C3/21060/
D C3/21060/
AD C/ACAD C3/21060/
C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
AD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/
rsity Order of File ACAD C/ACAD C3/21060/

9-Dec-2025 04:56 PM - Page 89

- ➤ Hands-on experiments
 ➤ Collaborative learning
- ➤ Collaborative learning-Group discussion
- > Lecturing
- > ICT
- Practical sessions with demonstrations and hands on experiences

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination		
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10	
Writing assignment	5	
Reports/ presentations/ demonstrations by the students	10	

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

the course equips the student with the conceptual understanding, technical skills, and analytical abilities required for careers in modern agriculture and environmental management.

15	S	eed Technology	KU5DSEPLS308
DSE	Semester: 5	Hrs/week: 4 Theory + 0 practical	Credits: 4

- 1. Knowledge in Biology at 201-299 level
- 2. Ability to write examination in English

Course (Course Outcomes			
CO1	Explain the fundamentals of seed biology, including seed structure, types of seeds, importance, and seed dormancy, along with methods to overcome dormancy.			
CO2	Apply the principles and techniques of seed production in agricultural and horticultural crops including seed multiplication and post-harvest handling.			
CO3	Demonstrate knowledge of seed processing techniques such as drying, treatment, cleaning, grading, and storage, and identify equipment used in seed processing.			
CO4	Evaluate different seed storage structures and packaging methods, understand labeling, record maintenance, marketing, and handling practices for maintaining seed quality.			
CO5	Analyze the physiology of seed development, maturation, germination, and reserve mobilization, including the role of enzymes, hormones, and respiration in seed germination of major crops.			

Mapping of Course Outcomes to PSOs/Pos

EGIS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1		$\sqrt{}$	$\sqrt{}$									
5CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
ECO3							$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	
CO5									$\sqrt{}$	V	V	V

Course Description

This is an introductory biology course designed for the undergraduates to get a foundation in various aspects of seed production, storage and dormancy breaking.

- First module is dealing with the basics on seed biology and its dormancy.
- Second module delves into the standard methods for the production of seeds in various crops.
- Produced seeds are to be stored in good condition for future use and third module is giving the major processing protocols for that.
- Fourth module is giving idea on seed physiology and modern methods in seed production, certification and storage.

This course will give opportunity for the students who have a basic interest in agriculture, entrepreneurship and innovation.

- 1. To understand the biological principles and practices of seed production
- To apply techniques for seed processing, storage, and marketing
- 3. To explore modern advancements in seed science and biotechnological interventions.
 - 💹 o evaluate the role of seed technology in sustainable agriculture

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
16 9de 81	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module 1: Fundamentals of Seed Biology and Dormancy 15 Hours

- 1.1 Introduction to seed biology: Definition, objectives, and scope. Historical development and significance in agriculture. Types of seeds: Orthodox vs. Recalcitrant; Monocot vs. Dicot seeds.
- 1.2. Seed Characterization and Importance: Seed viability, purity, vigor, and moisture content. Role in crop improvement, food security, and biodiversity.
- 1.3. Seed Dormancy: Types of seed dormancy (physical, physiological, combinational). Methods to overcome dormancy: Scarification, stratification, chemical treatments. Advantages and disadvantages of dormancy.
- 1.4. Recent Advances in Seed Biology: Molecular regulation of dormancy (e.g., DOG1 gene in *Arabidopsis*). Genetic and epigenetic control of seed development. Use of transcriptomics and seed phenomics.

Module 2: Seed Production in Agricultural and Horticultural Crops `15 hrs

- 2.1. Principles and Methods of Seed Production Breeder, foundation, and certified seed classes. Genetic and physical purity maintenance. Pollination control and isolation distances
- 2.2. Seed Production in Major Crops. Cereal crops: Rice, wheat, maize. Vegetable crops: Pea, tomato, brinjal, cucumber. Techniques: Hand emasculation, bagging, hybrid seed production
- 2. 3. Seed Multiplication and Post-harvest Handling Seed multiplication ratios. Cleaning, grading, drying, and packaging.
- 2.4. Recent Advances in Seed Production: Hybrid seed technology and cytoplasmic male sterility (CMS). Biotechnology in seed production (marker-assisted selection, genome editing). Tissue culture and synthetic seeds.

Module 3: Seed Processing, Treatment, and Storage (15 Hours)

- 3.1 Seed Drying and Treatment: Importance of drying and optimum moisture content. Seed treatment methods: Chemical, biological, and polymer coating. Recent innovations: Seed priming, seed pelleting, bio-encapsulation.
- 3.2 Seed Cleaning and Equipment: Types of seed cleaning machines and their functioning. Precleaning, air-screen cleaning, gravity separator, etc.
- 3.3 Seed Storage: Techniques and Challenges: Short-term vs. long-term storage. Factors affecting seed longevity: Temperature, RH, pests. Godown sanitation and monitoring tools
- 3.4 Seed Marketing and Quality Assurance: Seed certification, labeling, and tagging. Demand—supply chain and seed distribution networks.

Module 4: Seed Physiology and Modern Trends (15 Hours)

- 4.1 Seed Development and Maturation: Embryo development and physiological maturity. Seed Scoat formation and chemical changes during maturation.
- 4.2 Chemical Composition and Reserve Accumulation: Protein, lipid, and carbohydrate biosynthesis in seeds. Seed storage proteins and their agricultural relevance.
- 24.3 Seed Germination and Physiology: Phases of germination, imbibition, and radicle germergence. Factors affecting germination: Water, temperature, oxygen, hormones. Hormonal regulation: Role of GA, ABA, auxins. Role of embryonic axis and enzymes (amylase, protease).
- \$\frac{2}{2}4.4 \text{ Recent Advances in Seed Physiology: Use of genomics, proteomics in studying ition. Artificial seed technology and stress-resilient seed varieties. Seed respiration and enzyme engineering.

5. TEACH SPACE 15 Hrs

rms module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this

module is strictly internal.

Theory 5Hrs

Seedbank for conservation-germplasm collection. Seed viability and variation among crops and varieties. Seedless fruit production

Practical 10 Hrs

- 1. Demonstration of dormancy-breaking methods
- 2. Seed viability testing (tetrazolium test)
- 3. Study of seed structure and classification using microscope and specimens
- 4. Field visit or virtual demonstration of seed production plots
- 5. Preparation of seed production plan for a selected crop
- 6. Seed treatment and coating demo
- 7. Seed packaging, tagging, and record maintenance
- 8. Germination testing in rice, pea, and wheat
- 9. Estimation of amylase activity during germination
- 10. Study of reserve mobilization during seedling growth
- 11. Seed purity analysis
- 12. Germination chamber setup and monitoring
- 13. Use of seed moisture meters and vigor index calculation
- 14. Visit to a seed testing laboratory / seed certification agency

Suggested Assignment Topics- Theory 1. Seed dormancy in crops and meth 2. Importance of seed dormancy 3. Seed viability

- Seed dormancy in crops and methods to break seed dormancy
- 3. Seed viability
- 4. Various applications of seed storage

Seed dormancy breaking experiment 2

- 2. Seed dormancy breaking experiments for different crops in various conditions

0		
ppr	Sl. No	Title/Author/Publishers of the Book specific to the programme
060/2024 A	1	Agrawal, P. K. (2019). <i>Principles of seed technology</i> (2nd ed.). Agri Gramodaya Publications. ISBN: 9789387067653
21	2	Agrawal, R. L. (2017). <i>Seed technology</i> (Revised ed.). Oxford & IBH Publishing. ISBN: 9788120413184
C3/	3	Bewley, J.D., Black, M. (1994). Seeds: Physiology of Development and Germination
C/ACAD	4	Bhale, M. S. (2015). Seed science and technology (2nd fully revised & enlarged ed.). Asha Book Agency. ISBN: 9789385047183
B ACAD	5	Bhale, M. S., & Khare, D. (2016). <i>Seed technology (Succinct edition)</i> . Scientific Publishers (India). ISBN: 9789386102430
File	6	Copeland, L.O., McDonald, M.B. (2001). Principles of Seed Science and Technology
Order of	7	Dadlani, M., & Yadava, D. K. (Eds.). (2023). Seed science and technology: Biology, production, quality. Springer Nature Singapore. https://doi.org/10.1007/978-981-19-5888-5
sity	8	Databases: The Arabidopsis Information Resource (TAIR) for seed-related gene studies
ver	9	Journals: Seed Science Research, Plant Physiology, Journal of Seed Technology
		Khare, D., & Bhale, M. S. (2013). Seed technology (2nd revised & enlarged ed.). Scientific Publishers (India). ISBN: 9788172338831
	11	Kumar, R. (2018). <i>A competitive book of seed science and technology</i> . Kalyani Publishers. ISBN: 9789327225512

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination		
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10	
Writing assignment	5	
Reports/ presentations/ demonstrations by the students	10	

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):
Marks Questions (Evaluating and Creating):

34 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

The course equips the student with the conceptual understanding, technical skills, and analytical abilities related to seed

16	Biotechnology and	Biotechnology and Basic Bioinformatics				
DSC	Semester: 6	Hrs/week: 3 Theory + 1 practical	Credits: 4			

- 3. Knowledge in Biology at 201-199 level
- 4. Ability to write examination in English

Course Ou	Course Outcomes						
CO1	Demonstrate understanding of core concepts and ethical issues in biotechnology.						
CO2	Perform basic plant tissue culture techniques under aseptic conditions.						
CO3	Explain and apply key steps in recombinant DNA technology and genetic manipulation						
CO4	Utilize bioinformatics tools for sequence analysis and biological data interpretation.						
CO5	Apply biotechnological and computational approaches to solve basic biological problems.						

Mapping of Course Outcomes to PSOs/Pos

STR/	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
_CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								$\sqrt{}$	\checkmark	\checkmark	\checkmark	
₹CO5									\checkmark	\checkmark	\checkmark	$\sqrt{}$

Course Description

This undergraduate course provides foundational knowledge of biotechnology and bioinformatics, emphasizing key techniques such as plant tissue culture, recombinant DNA technology, and computational biology.

- First module is dealing with the fundamentals of biotechnology, its historical evolution, interdisciplinary scope, and ethical dimensions.
- Second module focuses on the theoretical background and practical approaches of plant tissue culture, covering aseptic techniques, media preparation, culture types, and their wide-ranging applications in crop improvement and conservation.
- Third module module focuses on the theoretical background and practical approaches of plant tissue culture, covering aseptic techniques, media preparation, culture types, and their wide-ranging applications in crop improvement and conservation.
- Last module introduces computational tools and databases used to analyze biological data, including sequence alignment, molecular modeling, and genomics.

This course will provide opportunity to bridge biological sciences with technology, preparing students for advanced studies and research applications in life sciences, healthcare, and agriculture.

bjectives:

- o introduce the fundamental concepts, scope, and applications of biotechnology.
- o familiarize students with the principles and practices of plant tissue culture.
- ່ວ explain the tools and processes involved in recombinant DNA technology.
- 8. To provide an understanding of bioinformatics databases, tools, and their biological applications.

9. To develop laboratory and analytical skills relevant to biotechnology and bioinformatics research.

age g	Credit		Teaching Hour	S	A	ssessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
NG 95:	1	4	3+ 0+ 2 (45+ 0 + 30)	5	35 (25 T and 10 P)	65 (50 T and 15 P)	100

COURSE CONTENT

Module 1: Module I: Introduction to Biotechnology 10 h

- □1.1. Definition, Scope, and Branches of Biotechnology Introduction, interdisciplinary nature, and importance in various sectors (Disease treatment and Medicine, Agriculture, Industry, Environment and Ebiodiversity conservation.).
- 1.2. Historical Development and Milestones Major discoveries and evolution of modern biotechnology. Old and New Biotechnology; Introduction to various sub disciplines of biotechnology with special emphasis to Microbial, Plant, Animal and Environmental biotechnology;
- 1.3. Tools and Techniques in Biotechnology Overview of enzymes, vectors, cloning, and molecular tools.
- \$\frac{1}{2}\$1.4. Ethical, Legal, and Social Issues in Biotechnology Biosafety, bioethics, and regulatory frameworks. Laboratory Safety and Good Laboratory Practices (GLP). Waste disposal.

Module 2: Plant Tissue Culture 12 hrs

- 2.1. Basic Concepts and Laboratory Requirements: Totipotency, differentiation, dedifferentiation and redifferentiation. Laboratory set up- Sterilization techniques, media preparation (MS medium), aseptic handling.
- 2.2. Types of Plant Tissue Culture protocols of Callus culture, organ culture and protoplast culture. Micropropagation and Somatic embryogenesis. Significance of cell suspension culture, meristem culture and another culture.
- 2.3. Applications of Plant Tissue Culture Crop improvement, secondary metabolite production, germplasm conservation, and genetic transformation.
- 2.4. Troubleshooting and Contamination Control Common problems and solutions in tissue culture practices.

Module 3: Recombinant DNA Technology 13 hrs

- 3.1. Basic Tools of rDNA Technology: Enzymes- Restriction enzymes, ligases. Vectors (plasmids- pBR 322, pUC. Cosmids and phagemids. BAC and YAC), and host systems.
- 3.2. Steps in Gene Cloning Isolation, cutting, ligation, transformation, and screening of recombinant clones (GFP, Replica plating, Blue-white colony selection).
- 3.3. Expression of Recombinant Proteins Expression systems, selection markers, and optimization of expression.
- §3.4. Applications of Genetic Engineering: Genomic library and cDNA library construction and its significance. Production of recombinant insulin, GM crops, vaccines, and gene therapy.

Module 4. Bioinformatics: 10 hrs

- 54.1. Introduction to bioinformatics: Aim, scope and research areas of Bioinformatics. Branches of Bioinformatics, Proteomics, Genomics, Metabolomics. General applications of Bioinformatics.
- 54.2. Bioinformatic Databases: Definition, scope, and biological databases (NCBI, EMBL, GenBank, EDDBJ, PDB, UniProt).
- 54.3. Sequence Alignment and Analysis Pairwise and multiple sequence alignment, BLAST, and algorithms. CLUSTALW/X.
 - plications of Bioinformatics: Genome annotation, gene prediction, protein structure prediction. scovery, phylogenetic analysis-PHYLIP, and molecular modelling

5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly*

internal.

Theory 15Hrs

Techniques and tools of biotechnology: Electrophoresis - Agarose gel electrophoresis and Polyacrylamide gel electrophoresis and their uses. Blotting techniques: Northern, Southern and Western Blotting and their uses. Polymerase Chain Reaction, RT-PCR and qRT-PCR and their uses. DNA Fingerprinting; Molecular DNA markers - RAPD, RFLP, and SSR. DNA sequencing -Maxam -Gilbert method, Sanger's Sequencing.

GMPs Production- methodology, recombinant genes and the type of tools used in Bt Cotton, Golden Rice, Terminator Seeds, Flavr Savr Tomato, Banana with vaccines.

Practical 15 Hrs

- 1. In vitro culture of plant tissues Demonstration of sterilization techniques, Media preparation, Selection, surface sterilization and Inoculation of explants.
- 2. Isolation of DNA from plant tissues
- 3. Demonstration of Agarose gel electrophoresis
- 4. Polymerase chain reaction (Demonstration)
- 5. Visit report to a biotechnology lab
- 6. Vectors-pBR322, pUC, Ti plasmid vectors. (Diagrams)
- 7. Website visits to databases –NCBI, EMBL, DDBJ, PDB
- 8. Demonstration of Sequence retrieval from databases and Sequence alignment
- Construction of phylogenetic tree using PHYLIP 9.
- 10. Sequence alignment using BLAST

Suggested Assignment Topics- Theory

7. Tissue engineering.

8. Next Gen- sequencing, 9. Gene editing tools- CRISPR-Cas9

10. Agrobacterium biology

11. Ti and Ri plasmids

12. T-DNA mutagenesis and T-DNA Tagging.

Suggested Assignment Topics- Theory Suggested Assignment Topics- Practical 5. Preparation of Solutions and Buffers 6. Sterilization Techniques – Autoclav 7. Handling Micropipettes and Centrift 8. Gel Electrophoresis 9. PCR Amplification (Demonstration)

- 5. Preparation of Solutions and Buffers
- Sterilization Techniques Autoclaving,
- Handling Micropipettes and Centrifugation –
- 9. PCR Amplification (Demonstration/Simulation)

≸ Sl. No	Title/Author/Publishers of the Book specific to the module
QW 1	Balasubramanian, D., Bryce, C. F. A., Dharmalingam, K., Green, J., & Jayaraman, K.
Ŏ 1	(2004). Concepts in Biotechnology (2nd ed.). Universities Press.
d e e e e e e e e e e e e e e e e e e e	Baxevanis, A. D., & Ouellette, B. F. F. (Eds.). (2005). Bioinformatics: A Practical Guide
<u> </u>	to the Analysis of Genes and Proteins (3rd ed.). Wiley-Interscience.
9 3	Bhojwani, S. S., & Razdan, M. K. (1996). Plant Tissue Culture: Theory and Practice.
<u>1</u>	Elsevier.
2 4	Brown, T. A. (2016). Gene Cloning and DNA Analysis: An Introduction (7th ed.).
tisit +	Wiley-Blackwell.
.≧ 5	Dubey, R. C. (2017). A Textbook of Biotechnology (6th ed.). S. Chand & Company Ltd.
	European Bioinformatics Institute (EMBL-EBI). (n.d.). EMBL-EBI Training Resources.
	https://www.ebi.ac.uk/training/
	Glick, B. R., & Pasternak, J. J. (2010). Molecular Biotechnology: Principles and
/	Applications of Recombinant DNA (4th ed.). ASM Press.

	8	Karp, G. (2018). Cell and Molecular Wiley.	r Biology: Concepts and Experiments (9th ed.).	
97		<u> </u>	Genomes (KEGG). (n.d.). KEGG Database.	
- Page 97	9	https://www.genome.jp/kegg/		
	10	Lesk, A. M. (2019). Introduction to	Bioinformatics (5th ed.). Oxford University Press.	
:56 PN	11	Lodish, H., Berk, A., Kaiser, C. A., Biology (9th ed.). W. H. Freeman.	Krieger, M., & Darnell, J. (2021). Molecular Cell	
)25 04	12	Mount, D. W. (2004). Bioinformat Spring Harbor Laboratory Press.	ics: Sequence and Genome Analysis (2nd ed.). Co	old
Dec-2(13	National Center for Biotechnology I Resources. https://www.ncbe.readin	Education (NCBE). (n.d.). Educational Biotechnolo g.ac.uk/	gy
on 19-Dec-2025 04:56 PM	14	Blackwell Scientific.	6). Principles of Gene Manipulation (4th ed.).	
	15	Genomics (8th ed.). Wiley-Blackwe		
R (ACADEMIC)	16	ed.). Cold Spring Harbor Laboratory		
R (17		Expanding Horizons (4th ed.). Kalyani Publishers	•
REGISTRA	18	Academic Press.	ulture: Techniques and Experiments (3rd ed.).	
	19	U.S. National Center for Biotechnol https://www.ncbi.nlm.nih.gov/	ogy Information (NCBI). (n.d.). NCBI Databases.	
EPUTY	20		, A. A., & Witkowski, J. A. (2014). Recombinant	
F		DNA: Genes and Genomes – A Sho	rt Course (3rd ed.). W. H. Freeman.	
		CHING LEARNING STRATEGIES	MODE OF TRANSACTION	
	> I	CHING LEARNING STRATEGIES Hands-on experiments	MODE OF TRANSACTION > Lecturing	
	> I > (CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group	MODE OF TRANSACTION > Lecturing > ICT	
Approved by D	> I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion	MODE OF TRANSACTION Lecturing ICT Practical sessions with	
Approved by D	> I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on	
Approved by D	> I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion	MODE OF TRANSACTION Lecturing ICT Practical sessions with	
60/2024 Approved by D	> I > (CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on	
Approved by D	> I > 0 > I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on	
C3/21060/2024 Approved by D	> I > 0 > I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on	
C3/21060/2024 Approved by D	> I > 0 > I	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS emester Evaluation ESE University Examination	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on	
C/ACAD C3/21060/2024 Approved by D	ASSES End Se	Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS emester Evaluation ESE University Examination	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on experiences	
C/ACAD C3/21060/2024 Approved by D	ASSES End Se	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS emester Evaluation ESE University Examination Practical examination nuous Comprehensive Assessment Comprehensive Assessment Comprehensive Co	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on experiences	
C/ACAD C3/21060/2024 Approved by D	ASSES End Se	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS emester Evaluation ESE University Examination Practical examination nuous Comprehensive Assessment Compr	MODE OF TRANSACTION > Lecturing > ICT > Practical sessions with demonstrations and hands on experiences	
C/ACAD C3/21060/2024 Approved by D	ASSES End Se	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits CSMENT RUBRICS Emester Evaluation ESE University Examination Practical examination Inuous Comprehensive Assessment Comp	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on experiences CCA e-false, fill-in-the-blank, matching, short answer	
C3/21060/2024 Approved by D	ASSES End Se	CHING LEARNING STRATEGIES Hands-on experiments Collaborative learning-Group discussion Lab visits SSMENT RUBRICS emester Evaluation ESE University Examination Practical examination nuous Comprehensive Assessment Compr	MODE OF TRANSACTION Lecturing ICT Practical sessions with demonstrations and hands on experiences CCA e-false, fill-in-the-blank, matching, short answer	

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Lab visits	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	65
University Examination	50
Practical examination	15
Continuous Comprehensive Assessment CCA	35
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	10
Internal practical examination	10

Sample Questions to test Outcomes.

Marks Question (Understanding)
Questions (Applying and Analyzing):
Questions (Evaluating and Creating):

Questions (Evaluating and Creating):

Employability for the Course / Programme

17	Research Methodol	ogy and Biostatistics	KU6DSCPLS310
DSC	Semester: 6	Hrs/week: 4 Theory + 0 practical	Credits: 4

- 1. Knowledge in Biology at 201-199 level
- Ability to write examination in English

Course Ou	tcomes
CO1	Formulate research questions, hypotheses, and study designs.
CO2	Collect, organize, and summarize scientific data effectively.
CO3	Apply appropriate statistical methods to analyze biological data.
CO4	Interpret and present research findings using statistical and graphical tools.
CO5	Demonstrate understanding of research ethics and report writing standards.

Mapping of Course Outcomes to PSOs/Pos

RÁR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	\checkmark	$\sqrt{}$									
[™] CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
5CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	
ECO5									1	V	V	$\sqrt{}$

Course Description

This biology course provides foundational knowledge and practical skills in research design, data collection, analysis, and interpretation.

- First module is dealing with the basic principles of research, scientific thinking, and the systematic approach to investigation.
- Second module emphasizes on different types of research designs and techniques of data collection in biological sciences.
- Third module focuses on statistical concepts, data summarization, and hypothesis testing essential for biological research.
- Last module covers data management, use of statistical software, and effective research communication and publication.

This course integrates research methodology with statistical reasoning to help students plan, execute, and present scientific investigations effectively and ethically.

- To understand the fundamental principles and processes of scientific research.
- To develop skills in designing, conducting, and reporting research studies.
- To learn various data collection methods and statistical tools for biological data analysis.
- To familiarize students with software and computational tools used in biostatistics.
- 5. To cultivate critical thinking and ethical practices in research

Credit **Teaching Hours** Assessment

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
ge 100	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module 1: Introduction to Research Methodology

- 21.1 Definition of research: types (basic, applied, quantitative, qualitative). Analytical vs Descriptive, Basic vs Applied, Research Methods vs Methodology.
- 1.2. Conceptualization a research problem: Research Process Steps in research, research questions, and objectives formulation. Developing a research model, Validation of the proposed model with standard procedures and attributes
- 21.3. Literature Review and Research Gap Identification: Sources, search strategies, and Freferencing styles. Search engines. Literature-review and its consolidation
- 1.4. Research Ethics and Plagiarism: Ethical issues, informed consent, intellectual property rights. Commercialization and Royalty. Ethics during Report Writing- need of acknowledgements, citations, research grants/ fellowships, bibliography.

Module 2: Research Design and Data Collection

12 Hours

12 Hours

- 2.1. Research design and implementation: Research Designs Experimental, observational, descriptive, and analytical designs.
- 2.2. Sampling Methods: Probability and non-probability sampling, sample size determination.
- 2. 3. Data Collection Methods: Questionnaires, interviews, experiments, surveys, field studies. Observation and Data acquisition., Processing and Analysis Strategies
- 2.4. Data quality check: Importance of measurement and unts. Reliability, validity, and types of scales.

Module 3: Biostatistics – Descriptive and Inferential Statistics 14 Hours

- 3.1. Types of Data and Data Presentation Qualitative and quantitative data, tables, graphs, Scharts. Various types graphs, charts and tables. A comparative account on merits and demerits of each type
- 3.2. Measures of Central Tendency and Dispersion Mean, median, mode, range, variance, standard deviation. A comparative account on merits and demerits of each type
- 3.3. Correlation and Regression Analysis: Linear regression, correlation coefficients, and interpretation. A comparative account on types of correlation.
- 3.4. Hypothesis Testing: Null and alternative hypotheses, t-test, chi-square test, ANOVA, and p-values.

Module 4. Data Analysis Tools and Research Reporting 8 Hours

- 4.1. Introduction to Statistical Software Use of Excel, SPSS, R, and online statistical tools
- 4.2. Data Interpretation and Visualization Graphs, charts, tables, and figures. Photos and videos as data in biological science.
- 4.3. Scientific Writing and Report Preparation Structure of a thesis/paper, abstracts, citations.
- 4.4. Presentation and Publication of Research PowerPoint presentations, poster preparation, publication ethics.

ŌModule 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

r and AI in research planning and implementation. merits and demerits.

1 10 Hrs

raph and Table preparation using computers and spread sheets or AI software

Work out problems on measures of central tendencies, measures of dispersion. Chisquare analysis, both manually and using computer software.

3. Preparation of power point presentations and poster preparations using computer software and mobile applications

Suggested Assignment Topics- Theory 1. Various research designs applicab 2. Ethics in biological research 3. IPR and Biology

- 1. Various research designs applicable to agricultural research

- 5. Electron microscopic images and biological research
- 6. Application of statistics in biological research

- 4. Ethics and Biotechnology
 5. Electron microscopic images and by
 6. Application of statistics in biologica

 Suggested Assignment Topics- Practical
 1. Preparation of graphs and charts usi
 2. Microscopy and visualisation of images 1. Preparation of graphs and charts using AI
 - 2. Microscopy and visualisation of images using software

no (;	Sl. No	Title/Author/Publishers of the Book specific to the module
EMIC	1	Altman, D. G. (1991). Practical Statistics for Medical Research. Chapman and Hall.
(ACAL	2	Bland, M. (2015). An Introduction to Medical Statistics (4th ed.). Oxford University Press.
REGISTRAR (ACADEMIC	3	Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches (5th ed.). SAGE Publications.
REGIS	4	Dawson, C. (2019). Introduction to Research Methods: A Practical Guide for Anyone Undertaking a Research Project (5th ed.). Robinson.
7	5	Glantz, S. A. (2011). Primer of Biostatistics (7th ed.). McGraw-Hill Education.
EPU	6	GraphPad Software. (n.d.). Statistical Analysis Tools. https://www.graphpad.com
by DEF	7	Kothari, C. R., & Garg, G. (2019). Research Methodology: Methods and Techniques (4th ed.). New Age International.
Approved	8	Kumar, R. (2019). Research Methodology: A Step-by-Step Guide for Beginners (5th ed.). SAGE Publications.
Арр	9	Motulsky, H. (2018). Intuitive Biostatistics (4th ed.). Oxford University Press.
7	10	National Center for Biotechnology Information (NCBI). (n.d.). PubMed Database. https://pubmed.ncbi.nlm.nih.gov
C3/21060/2024	11	Pagano, M., & Gauvreau, K. (2018). Principles of Biostatistics (2nd ed.). CRC Press.
\cap	12	Pandey, P., & Pandey, M. M. (2021). Research Methodology: Tools and Techniques (4th ed.). Bridge Center.
C/ACA	13	R Core Team. (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org
	14	Rosner, B. (2016). Fundamentals of Biostatistics (8th ed.). Cengage Learning.
e ACA	15	Sokal, R. R., & Rohlf, F. J. (2012). Biometry: The Principles and Practice of Statistics in Biological Research (4th ed.). W. H. Freeman.
Order of File ACAD	16	SPSS Tutorials. (n.d.). IBM SPSS Statistics Documentation. https://www.ibm.com/spss
	17	Thirumalaisamy, R. (2020). Research Methodology in Biological Sciences. Scientific Publishers.
l rersity	18	Walliman, N. (2018). Your Research Project: Designing and Planning Your Work (4th ed.). SAGE Publications.
		Wayne, D. W., & Chad, L. C. (2018). Biostatistics: A Foundation for Analysis in the Health Sciences (11th ed.). Wiley.
鄉		Zar, J. H. (2010). Biostatistical Analysis (5th ed.). Pearson.

Ñ
0
Ŋ
9
ă
エ
5
_
ō
0
\cong
_
Щ
9
S
\mathcal{L}
\sim
α
\leq
K
8
<u>(4)</u>
뷣
<u>~</u>
<u>≯</u>
둑
₫
Ш
F
₾
副
8
9
0
\simeq
Apr
1 Apr
24 App
0
)/2024 App
0
0
1060/20
0
/21060/20
C3/21060/20
3/21060/20
C3/21060/20
AD C3/21060/20
AD C3/21060/20
C/ACAD C3/21060/20
/ACAD C3/21060/20
C/ACAD C3/21060/20
ACAD C/ACAD C3/21060/20
ACAD C/ACAD C3/21060/20
ile ACAD C/ACAD C3/21060/20
File ACAD C/ACAD C3/21060/20
of File ACAD C/ACAD C3/21060/20
r of File ACAD C/ACAD C3/21060/20
der of File ACAD C/ACAD C3/21060/20
rder of File ACAD C/ACAD C3/21060/20
der of File ACAD C/ACAD C3/21060/20
ity Order of File ACAD C/ACAD C3/21060/20
rsity Order of File ACAD C/ACAD C3/21060/20
sity Order of File ACAD C/ACAD C3/21060/20
versity Order of File ACAD C/ACAD C3/21060/20
la versity Order of File ACAD C/ACAD C3/21060/20
resity Order of File ACAD C/ACAD C3/21060/20
resity Order of File ACAD C/ACAD C3/21060/20
PAGE Versity Order of File ACAD C/ACAD C3/21060/20

5 04:56 PM - Page 102

- Statistical calculations in the classroom
- > Collaborative learning-Group discussion
- > Demonstrations using computers and other software
- Lecturing
- ICT
- > Practical sessions with demonstrations and hands on experiences

ASSESSMENT RUBRICS	Marks			
End Semester Evaluation ESE				
University Examination				
Practical examination				
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)				
Writing assignment				
Reports/ presentations/ demonstrations by the students				
Internal practical examination	10			

ample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme
This course enhances students' analytical, statistical, and research-writing skills, preparing them for roles in research, cademia, and data-driven industries.

18	Ph	ytophysiology	KU6DSCPLS311
DSC	Semester: 6	Hrs/week: 3 Theory + 1 practical	Credits: 4

- 1. Knowledge in Biology at 201-199 level
- Ability to write examination in English

Course Outcomes						
CO1	Explain major physiological functions and processes in plants.					
CO2	Analyze how plants absorb and transport water and minerals.					
CO3	Describe the biochemical pathways of photosynthesis and respiration.					
CO4	Interpret the roles of hormones and environmental cues in plant growth and development.					
CO5	Perform basic experiments related to plant physiology and analyze the results					

Mapping of Course Outcomes to PSOs/Pos

KAR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark						
CO3							$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$		
CO4								$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	
CO5									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	V

Course Description

This explores the functional aspects of plants—their growth, metabolism, and response to environmental stimuli.

- First module is dealing with the movement, absorption, and loss of water in plants and its physiological significance.
- Second module focuses on essential elements, their uptake, and the transport of organic and inorganic materials within plants.
- Third module provides an in-depth understanding of how plants convert light energy into chemical energy and utilize it in metabolic pathways.
- Plant growth patterns, hormonal regulation, and physiological responses to environmental factors are described in the fourth module.

It equips students with conceptual and practical knowledge essential for further studies and research in plant sciences, agriculture, and biotechnology.

- 1. To introduce the fundamental physiological processes occurring in plants.
- 2. To understand mechanisms of water and nutrient transport in plants.
- 3. To study photosynthesis, respiration, and other energy-related processes.
- 4. To explore the role of plant growth regulators and environmental responses.
 - develop skills in conducting physiological experiments and data interpretation.

[L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
ge 10 ²	3	1	4	3+0+2 (45+0+30)	5	35 (25 T and 10 P)	65 (50 T and 15 P)	100

Module 1: Plant–Water Relations

10 Hours

- 21.1. Water Potential and Diffusion: Diffusion, DPD, Plasmolysis, Osmosis, Osmotic Pressure Concept of water potential- components, and measurement. Turgor pressure, Imbibition.
- 1.2. Absorption and Transport of Water Pathways (apoplastic, symplastic, transmembrane) and root pressure.
- 1.3. Ascent of Sap Cohesion–tension theory and supporting evidence.
- $\frac{1}{2}$ 1.4. Transpiration and Guttation Mechanisms, factors affecting, and significance. **Antitranspirants**

Module 2: Mineral Nutrition and Translocation 12 Hours

- 2.1. Essential Mineral Elements Criteria of essentiality and their physiological roles. Macro, micro and trace elements. Macro and Micro nutrients – Specific roles and deficiency symptoms, Hydroponics.
- 2.2.. Mechanism of Mineral Uptake Passive and active absorption, ion exchange theory.
- 2.3. Nitrogen Metabolism Nitrogen fixation, nitrate reduction, and ammonium assimilation.
- 2.4. Translocation of Solutes Phloem transport, pressure flow hypothesis, and source–sink relationship.

Module 3: Photosynthesis and Respiration

14 Hours

- -3.1 Photosynthetic Pigments and Light Reactions Structure and function of chloroplast; Photosystems I & II; photophosphorylation
- $\overline{5}$ 3.2. Carbon Fixation Pathways C3, C4, and CAM pathways; photorespiration.
- 3.3. Factors Affecting Photosynthesis Light, CO₂, temperature, and water; measurement of photosynthetic rate.
- 3.4. Plant Respiration Glycolysis, Krebs cycle, electron transport system, and respiratory auotient

Module 4. Growth, Development, and Plant Movements

9 Hours

- 4.1. Growth and Development: Phases, measurement, and differentiation
- 4.2. Plant Growth Regulators (PGRs): Types, physiological effects, and commercial applications.
- 4.3. Photoperiodism and Vernalization: Concepts, types, and significance in flowering. Phytochrome - chemistry and physiological effects
- 4.4. Tropisms and Nastic Movements: Movements of locomotion, Curvature and Hygroscopic movements, Mechanisms and ecological importance

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 15Hrs

Bioenergetics: Laws of Thermodynamics, High energy compounds and high energy onucleotides- ATP, NADPH, FADH and FMN with emphasis to the structure and function of ≧ATP.

Other metabolisms in plants: Fatty Acid metabolism- beta Oxidation. Nitrogen Metabolism ■ Nation and deamination.

levelopments and fruit ripening, Senescence.

115 Hrs

Determination of water potential by tissue weight change method.

2. Rate of plasmolysis determination using Rhoeo leaf epidermal peelings

- Relation between water absorption and transpiration.
- 4. Extraction and separation of leaf pigments by paper chromatography.
- 5. Effects of light intensity on photosynthesis by Wilmott's bubbler.
- 6. Photo morphogenesis in seedlings grown under normal light and darkness.
- 7. Demonstration of gravitropism using Klinostat.
- 8. Determination of the rate of transpiration using Ganong's potometer.
- 9. Kuhne's fermentation experiment. 10. Respirometer experiment.
- 10. Study of auxin effect on coleoptile curvature / seed germination / apical dominance

- Plant physiologists and their discoveries
- 3. Relation between water absorption
 4. Extraction and separation of leaf pi
 5. Effects of light intensity on photosy
 6. Photo morphogenesis in seedlings of the seedling of the seedlings of the seedling of the Major changes in metabolism during seed germination, bolting, flower development and fruit development

 - 5. Applications of plant physiology in agriculture,

- 1. Experiments using physiological apparatus at different condition
- Stress related metabolism and their assays
- 4. Pollen viability and seed viability study

ISTE	. 101	tell viability and seed viability study
EG	Sl. No	Title/Author/Publishers of the Book specific to the module
Ϋ́	1	Bidwell, R. G. S. (1979). Plant Physiology (2nd ed.). Macmillan.
EPUT	2	Buchanan, B. B. (2015). The Arabidopsis Book: Plant Physiology Online.
DE		American Society of Plant Biologists. https://academic.oup.com/plphys
by	3	Buchanan, B. B., Gruissem, W., & Jones, R. L. (2015). Biochemistry and
/ed	4	Molecular Biology of Plants (2nd ed.). Wiley Blackwell.
Approved	4	Devi, P. (2017). Plant Physiology. CBS Publishers & Distributors.
Apr	5	Heldt, H. W., & Piechulla, B. (2010). Plant Biochemistry (4th ed.). Academic Press.
124		Hopkins, W. G., & Hüner, N. P. A. (2009). Introduction to Plant Physiology (4th
0/20	6	ed.). Wiley.
C3/21060/2024	7	Khan Academy. (n.d.). Plant Physiology Tutorials. https://www.khanacademy.org
C3/2	8	Moore, T. C. (1989). Biochemistry and Physiology of Plant Hormones (2nd ed.).
CAD (0	Springer.
AC/	9	Mukherji, S., & Ghosh, A. K. (1995). Plant Physiology. Tata McGraw Hill.
/\	10	National Center for Biotechnology Information (NCBI). (n.d.). Plant Physiology
ACAD	10	Journal Resources. https://www.ncbi.nlm.nih.gov
AC	11	Nobel, P. S. (2005). Physicochemical and Environmental Plant Physiology (3rd
File,		ed.). Elsevier Academic Press.
	12	Nobel, P. S. (2009). Physiochemical and Environmental Plant Physiology (4th ed.).
Order of	12	Academic Press.
	13	Noggle, G. R., & Fritz, G. J. (1983). Introductory Plant Physiology. Prentice-Hall.
ersity	14	Pandey, S. N., & Sinha, B. K. (2020). Plant Physiology (6th ed.). Vikas Publishing
/er		House. Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2013). Biology of Plants (8th ed.).
		W. H. Freeman.
Ħ	- M	Salisbury, F. B., & Ross, C. W. (1992). Plant Physiology (4th ed.). Wadsworth
		Publishing.
Ī	1.7	Srivastava, H. S., & Singh, R. P. (2018). Plant Physiology and Biochemistry.
	17	Rastogi Publications.
-		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION			
Hands-on experiments	Lecturing			
Collaborative learning-Group	> ICT			
discussion	Practical sessions with			
	demonstrations and hands on			
	experiences			
		Marks		
ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
 End Semester Evaluation ESE University Examination Practical examination 				
Practical examination				
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)				
 Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions) Writing assignment 				
Internal practical examination				
 Writing assignment Reports/ presentations/ demonstrations by the students 				

- Marks Questions (Applying and Analyzing):
- Marks Questions (Evaluating and Creating):
- 4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course prepares students for careers in agriculture, plant research, environmental management, and allied life science andustries by enhancing their understanding of plant physiological mechanisms.

19	Evolution and	Plant Breeding	KU6DSCPLS31 2
DSC	Semester: 6	Hrs/week: 4 Theory	Credits: 4

- 1. Knowledge in Biology at 201-199 level
- 2. Ability to write examination in English

Course Ou	tcomes
CO1	Demonstrate an understanding of evolutionary theories and their application to plant science.
CO2	Identify key evolutionary events and their significance in plant diversification.
CO3	Evaluate different breeding methods and their relevance to crop improvement.
CO4	Utilize knowledge of genetics and evolution to address agricultural challenges.
CO5	Integrate ethical and ecological considerations in plant breeding and conservation programs.

Mapping of Course Outcomes to PSOs/Pos

: GIS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
ECO3							$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark		
CO4								\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	
CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This undergraduate course introduces students to the scientific foundations of biological evolution and their practical applications in the genetic improvement of plants.

- First module explores how life originated and evolved through various scientific theories and discusses the molecular and fossil evidence supporting evolutionary theory.
- Second module explores how evolutionary mechanisms operate at different scales—from small genetic changes within populations to large-scale evolutionary trends leading to the formation of new species.
- Third introduces the goals, principles, and genetic foundations of plant breeding.
- Fourth module discusses recent advances in plant breeding, integrating molecular tools, genomics, and bioinformatics for crop improvement and sustainability.

The course aims to build a bridge between evolutionary biology and applied plant science for sustainable agriculture and biodiversity conservation.

- 1. Explain the fundamental principles and mechanisms of evolution in plants and animals.
- 2. Analyze the role of genetic variation and selection in shaping evolutionary processes.
- escribe the historical and modern approaches to plant breeding.
 - pply genetic principles to the improvement of crop plants.

preciate the importance of biodiversity and germplasm conservation for sustainable breeding programs.

Credit	Teaching Hours	Assessment
--------	----------------	------------

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
4	0	4	4+0+0 (60+0+0)	4	30	70	100

Module 1: Origin of Life and Theories of Evolution

12 hours

- 1.1. Origin of Life: Theories of abiogenesis and biogenesis; Miller–Urey experiment; origin of cells. Oparin's bubble hypothesis. The origin of Prokaryotes and Eukaryotes; the earliest cells LUCA. Endosymbiotic theory by L. Margulis
- 1.2.Pre-Darwinian Theories: Use and Disuse theory by Lamark; Germplasm theory by Weisman and De Vries.
- 21.3. Darwinian Theories: Darwinism: HMS Beagle and its voyages- Natural Selection theory Darwin and Wallace- examples of plants cited by Wallace and Darwin. Neo-Darwinism and Oother modern concepts of evolution. Molecular evidences for Darwinism Modern Synthetic Theory of evolution.
- 1.4. Mechanisms of Evolution: Mutation, recombination, genetic drift, migration, and natural selection. Evidence for Evolution: Fossil records, comparative anatomy, embryology, atavism biogeography, and molecular evidence.

Module 2: Microevolution, Macroevolution, and Speciation 12 Hours

- 2.1. Evolution: Definition- classical and modern concepts Evolution: Definition- classical and modern concepts. Macro and Microevolution, Convergent and Divergent Evolution, Exetrogressive and Progressive Evolution.
- 2.2. Micro and macroevolution: Microevolution-Genetic variation within populations; ; Equilibrium of Gene frequencies and Hardy Weinberg law. Changes in Gene Frequencies act as elementary forces of evolution -Mutation, selection, migration, genetic drift, non-random mating. Macroevolution: Patterns and rates of large-scale evolutionary change; adaptive gradiation; evolutionary trends in plants.
- 2.3. Isolation and Speciation: Isolation Mechanisms: Prezygotic and postzygotic barriers; reproductive isolation in plants. Types of speciation (allopatric, sympatric, parapatric, peripatric); role of natural selection and genetic drift in species formation.
- 2.4. Mutation and Evolution: Polyploidy and Evolution, Hybridization and Evolution, Polygenic inheritance heritability and selection-

Module 3: Principles and Methods of Plant Breeding 12 Hours

- 3.1. **History and Objectives:** Domestication of crops; contributions of Mendel and Vavilov; objectives of modern breeding.
- **3.2.Genetic Basis of Breeding:** Variation, heritability, combining ability, and selection response.
- 3.3.Breeding Methods for self pollinated and cross pollinated crops: Pure-line selection, mass selection, hybridization, heterosis, and recurrent selection.
- 3.4.Mutation and Polyploidy Breeding: Induced mutation and chromosome manipulation in crop improvement.

Module 4. Modern Approaches and Applications in Plant Breeding 12 hours

- 4.1. Biotechnology in Plant Breeding: Molecular Breeding Techniques: Marker-assisted selection (MAS), QTL mapping, and genomic selection. Genetic engineering, CRISPR-Cas systems, and transgenic crops.
- 4.2. Breeding for Biotic and Abiotic Stress Tolerance: Drought, salinity, pest, and disease e.

mplasm Conservation and Ethical Issues: Gene banks, intellectual property rights, and

t variety protection, Farmer's right and plant breeders rights.

Module 5. TEACH SPACE

15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and poutcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Genetic resources-Centres of diversity, Origin of crop plants, Domestication, Conservation, Plant introduction and acclimatization. Plant quarantine measures. Methods of Breeding-Hydridization-Heterosis and Selection, (Pedigree, Mass, Pureline and Clonal). Major plant breeding Institutes in India and its contributions. Achievements in Rice, Wheat, Cotton, Sugarcane, Potato and Tomato.

Practical 10 Hrs

- 1. Demonstration of Emasculation and hybridization
- 2. Vegetative propagation budding, layering and grafting
- 3. Visits to hybridisation institutes
- 4.

Suggested Assignment Topics- Theory

- Successful hybrids of crops and their properties

1. Successful hybrids of crops and their 2. Genetic erosion due to breeding 3. 2. Western Assignment Topics- Theory 2. Genetic erosion due to breeding 3. 2. Western Assignment Topics- Practical 1. P 2. S

>-		
Ĺ	SI. No	Title/Author/Publishers of the Book specific to the module
/ DEPL	1	Acquaah, G. (2012). <i>Principles of Plant Genetics and Breeding</i> (2nd ed.). Wiley-Blackwell.
d b	2	Allard, R. W. (1999). Principles of Plant Breeding (2nd ed.). John Wiley & Sons.
Approved by	3	Barton, N. H., Briggs, D. E. G., Eisen, J. A., Goldstein, D. B., & Patel, N. H. (2007). <i>Evolution</i> . Cold Spring Harbor Laboratory Press.
Ap	4	Futuyma, D. J., & Kirkpatrick, M. (2017). Evolution (4th ed.). Sinauer Associates.
C3/21060/2024	5	Singh, B. D. (2015). <i>Plant Breeding: Principles and Methods</i> (10th ed.). Kalyani Publishers.
21060	6	Sleper, D. A., & Poehlman, J. M. (2006). <i>Breeding Field Crops</i> (5th ed.). Blackwell Publishing.
C/ACAD C3/	7	Stebbins, G. L. (1971). Processes of Organic Evolution. Prentice-Hall.
D C/A	8	Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2013). <i>Biology of Plants</i> (8th ed.). W. H. Freeman.
CAD	9	Snustad, D. P., & Simmons, M. J. (2020). Principles of Genetics (8th ed.). Wiley.
File A	10	Hancock, J. F. (2012). Plant Evolution and the Origin of Crop Species (3rd ed.). CABI.
of Fi	11	Journals and Reports
Order of	12	Tanksley, S. D., & McCouch, S. R. (1997). Seed banks and molecular maps: Unlocking genetic potential from the wild. <i>Science</i> , 277(5329), 1063–1066.
ersity C	13	Tester, M., & Langridge, P. (2010). Breeding technologies to increase crop production in a changing world. <i>Science</i> , <i>327</i> (5967), 818–822.
e/		Gepts, P. (2002). A comparison between crop domestication, classical plant breeding, and genetic engineering. <i>Crop Science</i> , 42(6), 1780–1790.
		McCouch, S. R. (2004). Diversifying selection in plant breeding. <i>PLoS Biology</i> , <i>2</i> (10), e347.
	16	Kumar, A., & Singh, P. (2016). Marker-assisted selection in crop plants: Concepts and practice. <i>Plant Breeding</i> , <i>135</i> (1), 1–10.

	17	Henry, R. J. (2012). Plant Genotyping: The DNA Fingerprinting of Plants. CABI.					
- Page 110	18	FAO. (2010). The Second Report on the State of the World's Plant Genetic Resources for					
	10	Food and Agriculture. Food and Agriculture Organization of the United Nations.					
	10	IPGRI. (2003). Descriptors for Genetic Resources Documentation. International Plant					
	19	Genetic Resources Institute.					
\geq	20	Falconer, D. S., & Mackay, T. F. C. (1996). Introduction to Quantitative Genetics.					
9 P	20	Longman.					
4:5	21	Coyne, J. A., & Orr, H. A. (2004). Speciation. Sinauer Associates.					

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	5
Internal Practical Examination	10

• Internal Practical Examina Sample Questions to test Outcomes.

Marks Questions (Understanding)
Marks Questions (Applying and Analyzing):
Marks Questions (Evaluating and Creating):
Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course equips students with a deep understanding of biodiversity, adaptation, and genetic manipulation for sustainable

DEPUTY REGISTRAR (ACADEMIC) on 19-Dec-2025

20	Plant Ecology an	d Phytogeography	KU6DSCPLS313
DSC	Semester: 6	Hrs/week: 3 Theory + 1 practical	Credits: 4

- 3. Knowledge in Biology at 201-199 level
- 4. Ability to write examination in English

Course Ou	Course Outcomes				
CO1	Explain how biotic and abiotic factors influence plant distribution and growth.				
CO2	Describe and analyze key ecosystem functions such as productivity, energy flow, and nutrient cycling.				
CO3	Evaluate the effects of disturbances, pollution, and climate change on vegetation dynamics.				
CO4	Interpret patterns of plant diversity and distribution in India and globally.				
CO5	Apply ecological and phytogeographic principles to conservation and restoration projects.				

Mapping of Course Outcomes to PSOs/Pos

3151	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
_CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							\checkmark	\checkmark	\checkmark	$\sqrt{}$		
¦CO4								\checkmark	~	~	~	
≥ CO5									1	V	V	

Course Description

This course explores the fundamental concepts of plant ecology (populations, communities, ecosystems, successional dynamics, abiotic and biotic factors) and also examines contemporary environmental problems along with fundamental phytogeography principles.

- First module is dealing with how plants interact with their physical environment, how populations and communities are structured, and how ecosystems function.
- Second module examines how vegetation changes over time through succession and how disturbances and pollution influence community composition, ecosystem functioning, and stability in a rapidly changing environment.
- Third module contextualizes ecological theory within the diverse ecosystems of India and Kerala, emphasizing conservation of endemic and threatened flora.
- The final module expands the ecological perspective to spatial and temporal patterns of plant distribution, explaining global and Indian biogeographic regions and factors shaping vegetation evolution.

Students will engage with both theoretical and applied components, preparing them to analyse vegetation patterns, assess ecological processes, and understand how conservation and management link to ecological and geographic principles.

🖁 ojectives:

inderstand the basic ecological principles governing plant—environment interactions. Study population, community, and ecosystem structure and functioning.

- 3. To evaluate the impact of anthropogenic activities including pollution and land-use change on vegetation.
- 4. To understand large-scale patterns of plant distribution (phytogeography).

5. To develop applied ecological perspectives relevant to Indian and Kerala ecosystems.

© Credit			Teaching Hours		Assessment		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
Nd 95	1	4	3+ 0+ 2 (45+ 0 + 30)	5	35 (25 T and 10 P)	65 (50 T and 15 P)	100

COURSE CONTENT

Module 1: Fundamentals of Plant Ecology 15 hrs

- 1.1. Basic Ecosystem structure: concepts on hierarchy of ecological units- species, population, community, ecosystem, biome and biosphere. Basic structure of ecosystem- producers, consumers, decomposers.
- 1.2. Abiotic and biotic factors in plant ecology: light, temperature, water, soil, nutrients, wind. Climatic, edaphic and Topographic factors. Plant adaptations (hydrophytes, xerophytes, halophytes, parasites and epiphytes).
- \$1.3. Ecosystem function: Food chains/webs. Primary productivity (GPP, NPP) and energy flow, Biogeochemical cycles (carbon, nitrogen, phosphorus). Decomposition and nutrient recycling. Ecological pyramids. Comparative account on productivity of major ecosystems.
- 1.4. Population ecology of plants and Community Ecology: population growth, regulation, carrying capacity, life history strategies, demographic analysis. Community ecology: species interactions (competition, facilitation, herbivory, parasitism). Ecological amplitude and law of tolerance. Ecological niche. Ecotones and edge effects.

Module 2: Vegetation Dynamics, Disturbance, Pollution, and Ecosystem Stability 10 hrs

- 2.1. Vegetation Succession: Primary and secondary succession, hydrosere and xerosere, models of succession (relay, initial floristics), climax concepts.
- 2.2. Disturbance Ecology and Stability: Natural (fire, flood) and anthropogenic disturbances; resilience, resistance, and feedback mechanisms maintaining ecosystem stability.
- 2. 3. Pollution Ecology and Plant Responses: Types and sources of air, water, and soil pollution. Impacts on ecosystem. Physiological effects on plants (chlorosis, oxidative stress, reduced productivity). Bioindicators and biomonitoring (lichens, mosses, tree barks).
- 2.4. Ecosystem Function under Stress: Impact of pollutants and climate change on productivity and nutrient cycles. Restoration ecology: rehabilitation of degraded and polluted ecosystems. Phytoremediation and ecosystem detoxification.

Module 3: Plant Ecology in Indian and Kerala

- 3.1 Indian vegetation types: forests (evergreen, deciduous), grasslands, mangroves, wetlands.
- 3.2. Ecology of Western Ghats and Kerala ecosystems: endemism, montane grassland–shola mosaics, riparian systems.
- 3.3. Human impacts: deforestation, monoculture plantations, invasive species, urbanisation, and agro-ecosystems.
- 23.4. Ecological field and analytical methods: vegetation sampling, quadrat techniques, diversity indices, GIS and remote sensing applications.

Module 4. Phytogeography and Plant Distribution Patterns 10hrs

64.1. Phytogeography- definition- descriptive and dynamic – continental drift and age area phypothesis. Principles of Phytogeography- Species—Climate Equilibrium Principle. Endemism- paleo endemism, Neo-endemism and Epi-endemism. Centres of origin. Migration id dispersal mechanisms.

geographic Regions of India and the World: major floristic kingdoms and vegetation

nate Change and Plant Distribution Shifts: Predictive models, threatened flora, altitudinal and latitudinal migrations. Assisted migration. Phenological and Biome shifts. Trophic and Mutualistic Mismatch due to climate change.

4.4. Conservation Biogeography: biodiversity hotspots (Western Ghats, Himalayas), phytoendemism, and protected area networks.

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 15Hrs

Ecosystem services (provisioning, regulating, cultural, supporting) and human dependence. Case studies on various types of pollution. Ganga River, Chernobyl, London and Delhi Smog, Endosulfan, Tajmahal Case studies on Restoration and conservation activites. Earth Summits and World protocols Chipko movement, Silent Valley Movement. India as a mega-diversity nation. Concept of Hot-spots of biodiversity and hotspots in India. Threats to biodiversity. Insitu and Ex-situ conservation of biodiversity - National Parks, Sanctuaries and Biosphere Reserves, Sacred groves and Botanic Gardens. Man-wildlife conflict. Biodiversity related agencies and activities-PBR, BMC. Conservation of Indigenous knowledge and Community participation. Utilization of GPS, Remote sensing and GIS to address environmental problems.

₹Practical 15 Hrs

- 1. Visit a local polluted site and documentation of major pollutants/Reserve forest.
- 2. Study of plant community by quadrat method.
- Practical 15 Hrs

 1. Visit a local polluted site and documents of plant community by quadrated and epiphyte.

 2. Study of ecological and anatomical parasite and epiphyte.

 4. Estimation of DO and BOD and carbon diocuments of dissolved carbon diocuments.

 5. Estimation of dissolved carbon diocuments.

 6. Knowledge of ecological instruments luxmeter, wet and dry bulb thermonents.

 7. Visit to Local government office to a participation in PBR related works.

 8. Participation in PBR related works.

 8. Participation in PBR related works.

 9. Geotegging and world heritage centers.

 3. Impact of flood/fire on plant community.

 4. Adaptations of plants in mangroves.

 5. Biodiversity hotspots of India.

 9. GIS application in college campus.

 3. Study of leaves/ roots etc with various.

 4. Water and soil testing to find out the state of the state o 3. Study of ecological and anatomical modifications of xerophyte, hydrophyte, halophyte,
 - 4. Estimation of DO and BOD and calculate the primary productivity of pond water.
 - 5. Estimation of dissolved carbon dioxide in water
 - 6. Knowledge of ecological instruments- hygrometer, rain gauge, anemometer, altimeter, luxmeter, wet and dry bulb thermometer, salinometer, water sampler, GPS
 - 7. Visit to Local government office to read the PBR of the locality.
 - 8. Participation in PBR related works

- 1. Conserved areas of Kerala and India
- Geotegging and world heritage centres
- 3. Impact of flood/fire on plant communities

- Study of leaves/ roots etc with various applications or software
- Water and soil testing to find out the major pollutants

ile /	Sl. No	Title/Author/Publishers of the Book specific to the module
of F	1	Aggarwal, S. K. (2009). Foundation course in biology (2nd ed.). Ane Books Pvt. Ltd.
Order	2	Ambasht, R. S. (2023). A Textbook of Plant Ecology (16th ed.). CBS Publishers & Distributors.
rsity (3	Ambasht, R. S., & Ambasht, N. K. (2015). A textbook of plant ecology (15th ed.). CBS Publishers & Distributors Pvt. Ltd.
— Пайы	/ የሴ ን ፡፡ታ	Arumugam, N., & Kumaresan, V. (2023). Plant Ecology. Saras Publication.
		Bharucha, E. (2005). Textbook of environmental studies for undergraduate courses. Universities Press (India) Pvt. Ltd.
		Chaubey, O. P., Sharma, A., & Prakash, R. (n.d.). Forest Ecology in India. Aavishkar Publishers.
	7	Clark, R. S. (1992). Marine pollution (5th ed.). Oxford University Press.

4	8	Corlett, R. T., & Primack, R. B. (2011). Tropical Rain Forests: An Ecological and Biogeographical Comparison (2nd ed.). Wiley-Blackwell.
Page 11	9	Cox, C. B., & Moore, P. D. (2005). Biogeography: An Ecological and Evolutionary Approach (8th ed.). Blackwell Publishing.
- 1	10	Gaston, K. J., & Spicer, J. I. (2004). Biodiversity: An Introduction (2nd ed.). Blackwell Publishing.
04:56 PM	11	Gurevitch, J., Scheiner, S. M., & Fox, G. A. (2006). The Ecology of Plants (3rd ed.). Sinauer Associates.
	12	Huston, M. A. (1994). Biological Diversity: The Coexistence of Species on Changing Landscapes. Cambridge University Press.
-20	13	Jadhav, H. V. (n.d.). Environmental protection laws. Himalaya Publishing House.
9-Dec-2025	14	Keddy, P. A. (2017). Plant Ecology: Origins, Processes, Consequences. Cambridge University Press.
) on 1	15	Khitoliya, R. K. (2007). Environmental pollution: Management and control for sustainable development. S. Chand & Company Ltd.
MIC	16	Kormondy, E. J. (1989). Concepts of ecology (3rd ed.). Prentice-Hall of India Pvt. Ltd.
(ACADEMIC)	17	Kothari, A. (1997). Understanding biodiversity: Life, sustainability and equity (Tracts for the Times No. 11). Orient Longman Ltd.
L	18	Kumar, H. D. (1986). Modern concepts of ecology. Vikas Publishing House Pvt. Ltd.
REGISTRAR	19	Lambers, H., Chapin, F. S., & Pons, T. L. (2008). Plant Physiological Ecology (2nd ed.). Springer.
SIS	20	Mani, M. S. (Ed.). (1974). Ecology and Biogeography in India. Springer.
ZE(21	Misra, R., & Puri, G. S. (2021). Indian Manual of Plant Ecology. Scientific Publishers.
UTY	22	Nair, P. R. (1993). An Introduction to Ecology and Environmental Issues in the Western Ghats. (Report/Monograph). Centre for Earth Science Studies.
v DEPL	23	Pimm, S. L. (2011). The Rapid Rise of Invasive Species (Report). United Nations Environment Programme.
Approved by	24	Pullaiah, T., Krishnamurthy, K. V., & Bahadur, B. (Eds.). (2019). Ethnobotany of India (5 vols.). Apple Academic Press.
pro	. 25	Rajbala. (2025). Environmental Biology and Phytogeography. KD Publications.
0/2024 Ap	26	Sannigrahi, S., Chakraborti, S., Joshi, P. K., et al. (2019). Effects of Green Revolution led agricultural expansion on net ecosystem service values in India. arXiv. https://arxiv.org/abs/1909.10742
3/21060	27	Upadhyay, S., Mondal, T., Pathak, P. A., Roy, A., Bhattacharya, S., & Sen, S. (2018). A network theoretic study of potential movement and spread of Lantana camara in Rajaji Tiger Reserve, India. arXiv. https://arxiv.org/abs/1808.03160
D	28	Verma, V. (2011). Plant Ecology. Ane Books Pvt Ltd.
AD C/ACAD C3/2106	29	Whittaker, R. H., Levin, S. A., & Root, R. B. (1973). Evidence for the existence of risk-spreading and bet-hedging strategies in plants. Proceedings of the National Academy of Sciences, 70(5), 1335-1338.
⋖		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Filed visit to polluted areas	demonstrations and hands on
LSG office visit to see the PBR	experiences

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION	
➤ Hands-on experiments	Lecturing	
Collaborative learning-Group	> ICT	
discussion	Practical sessions with	
Filed visit to polluted areas	demonstrations and hands on	
LSG office visit to see the PBR	experiences	
, Ess since visit to see the last	experiences	
D D D D D D D D D D D D D D D D D D D	experiences	
SSMENT RUBRICS	experiences	Marks
	experiences	Marks 65
SSMENT RUBRICS	experiences	

	Continuous Comprehensive Assessment CCA	35					
ge 115	• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10					
Ра	and critical thinking questions) Writing assignment						
PM-	Reports/ presentations/ demonstrations by the students	10					
	Internal practical examination	10					
	ample Questions to test Outcomes.						
	Marks Question (Understanding) Marks Questions (Applying and Analyzing):						
	7 Marks Questions (Evaluating and Creating):						
	Marks Questions (Evaluating and Creating):						

44 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Employability for the Course / Programme

This course equips students for employment or further study in fields such as environmental consultancy and impact assessment; forest, agriculture, and biodiversity management; and climate change and pollution research.

OVER 15 TO THE TO T This course equips students for employment or further study in fields such as environmental consultancy and ecological

DSE		Floriculture and olericulture				
	Semester: 6	Hrs/week: 4 Theory	Credits: 4			

- 1. Knowledge in Biology at 201-199 level
- 2. Ability to write examination in English

Course Ou	tcomes
CO1	Explain the fundamental principles of floriculture, olericulture, and landscaping, including propagation, soil, nutrient, pest, and disease management.
CO2	Demonstrate knowledge of commercial flower and vegetable crop production techniques under both open field and protected environments.
CO3	Apply post-harvest technologies for handling, storage, dehydration, drying, and packaging of flowers and vegetables.
CO4	Analyze and design landscape gardens of different styles and special types
CO5	Evaluate entrepreneurial opportunities and value addition in floriculture and olericulture, including processing, marketing, trade, and export potential.

Mapping of Course Outcomes to PSOs/Pos

EGIS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
5CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
Есоз							$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									$\sqrt{}$	V	V	V

Course Description

This course provides a comprehensive overview of floriculture, olericulture and landscaping

- First module explores the basics of flower and vegetable cultivation.
- Second module delves into commercial scale flower production.
- Module three focuses on large-scale vegetable production.
- Fourth module comprises of the principles and styles of landscape garden design.

This course will provide you opportunities to learn various techniques in commercial floriculture, olericulture and landscaping.

- To provide fundamental knowledge of floriculture and olericulture practices suited to South Indian conditions.
- To understand production technology, pest and disease management, and post-harvest handling.
- To develop awareness of commercial potential, value addition, and sustainable practices.
- To introduce students to regional crop protocols and market linkages.

	Credit		Teaching	Hours	Assessment			
L/T			L/T/P	Total	CCA	ESE	Total	
4	0	4	4+ 0+ 0 (60+ 0 + 0)	5	30	70	100	

Module 1: INTRODUCTION TO FLORICULTURE AND OLERICULTURE

- 1.1 Introduction to floriculture and olericulture, importance and scope, history, classification of vegetables (fruit, leafy, root, and tubers) and flowers (cut flowers, loose flowers, foliage).
- 21.2. Principles of flower/vegetable production. propagation methods: seeds, cutting, grafting and tissue culture. Role of climate, soil, and regional resources
- 1.3. Soil, Water and Nutrient Management Basics. Soil Fertility management and pH adjustment. Strategies of Pest and disease management in floriculture and olericulture.
- 1.4. Global and national trends in olericulture and floriculture; export potential.

Module 2: COMMERCIAL FLORICULTURE

15 Hrs

8 Hrs

- 2.1. Scope and importance of commercial floriculture in India. Major crops for domestic and export. Role of season, variety selection, planting density, and harvesting practices. Common pests (thrips, aphids, mites, caterpillars). Control measures and integrated Pest management (IPM). Fungal, bacterial, and viral diseases (powdery mildew, wilt, mosaic).
- 2.2. Production techniques of commercial flower crops like rose, marigold, chrysanthemum, corchid, jasmine and anthurium. production techniques for bulbous ornamentals.
- 2. 3. Production techniques of flowers and foliage filler materials, growing of flowers under protected environments such as glass house, plastic house.
- 2.4. Postharvest technology of cut flowers in respect of commercial flower crops, dehydration technique for drying of flowers,

Module 3: COMMERCIAL OLERICULTURE

15 Hrs

- 23.1 Scope and importance of commercial olericulture in Southern India. Various cropping systems (intercropping, succession cropping). Pests of solanaceous and cucurbitaceous vegetables. Organic and chemical control measures. Diseases of tomato, brinjal, okra, and gourds. Integrated Disease Management (IDM) strategies. Use of resistant varieties and biological control.
- 3.2. Production techniques of commercial vegetable crops tomato, cucumber, cluster bean, brinjal, pladies finger for domestic and export market,
- 3.3. Production techniques of vegetables under protected environments such as glass house, plastic phouse, roof tops.
- 3.4. Postharvest technology management of vegetables

Module 4. LANDSCAPING

10 hrs

- 4.1. Principles of Landscape gardens, land scape design, styles of garden
- 4.2. Characteristics of Japanese gardens, Mughal, gardens, Hindu gardens and Buddhist gardens
- 4.3. Salient features of English garden, French and Persian garden and Italian gardens
- 4.4. Types of gardens- Lawn and hedge plants, roof garden, bog garden, sunken garden, clock garden

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is estrictly internal.

Theory 5Hrs

Entrepreneurship in Horticulture - Value Addition & Processing

Scope of entrepreneurship in floriculture and olericulture, Government schemes, subsidies, and policies supporting horticulture start-ups. Successful stories in olericulture and floriculture. Nutraceuticals and functional foods from vegetables and flower.

Practicals 7 Hrs

- 11. Vertical gardening
- 12 Iydroponics

otting mixture preparation reparation of fungicides

ollection and identification major diseases

16. IPM and IDM of crops

Suggested Assignment Topics- Theory

14. Features of different gardens

- 10. Visit to different flower/ vegetable gardens

- 13. Survey to find out diseases and symptoms

Sl. No	Title/Author/Publishers of the Book specific to the module
<u> </u>	Kannan, & Ranchana. (2016). Objective Floriculture. New India Publishing Agency.
5 2	Lal, L. (2020). Textbook of Landscaping. AgroTech Books.
3	Loehrlein, M. (2021). Sustainable Landscaping: Principles and Practices (2nd ed.). CRC Press.
4	Randhawa, G. S. (2015). Floriculture in India. Bio-Green.
5	Shankaraswamy, J. (2018). Comprehensive Floriculture. Jaya Publishing House.
6	Singh, A. K., & Sisodia, A. (2020). Textbook of Floriculture & Landscaping. New India Publishing Agency.
7	Syamal, M. M. (2015). Commercial Floriculture. NHP India.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

		13. Different innovations- Bonsai, 14. Features of diff							
	15	Exotic flowers and vegetables and their acclimatisation	_						
ggested	l Assignment Topics- Practical	L'Aotte Howers and vegetables and their accimiatisation	on procedur						
	sit to different flower/ vegetable gard	lens							
	ocumentation of different gardens								
12. IP	M and IDM of new varieties								
13. Su	rvey to find out diseases and sympton	ms							
Sl. No	Title/Author/Publishers of the B	ook specific to the module							
1	Kannan, & Ranchana. (2016). Object	Kannan, & Ranchana. (2016). Objective Floriculture. New India Publishing Agency.							
2	Lal, L. (2020). Textbook of Landscap	ing. AgroTech Books.							
3	Loehrlein, M. (2021). Sustainable Lan	ndscaping: Principles and Practices (2nd ed.). CRC Press.							
4	Randhawa, G. S. (2015). Floriculture	in India. Bio-Green.							
5	Shankaraswamy, J. (2018). Comprehe	ensive Floriculture. Jaya Publishing House.							
6	Publishing Agency.	extbook of Floriculture & Landscaping. New India							
7	Syamal, M. M. (2015). Commercial F	Floriculture. NHP India.							
	HING LEARNING STRATEGIES	MODE OF TRANSACTION							
	Hands-on experiments	> Lecturing							
	Collaborative learning-Group	> ICT							
(discussion	Practical sessions with demonstrations and hands on							
		experiences							
		experiences							
ASSE	SSMENT RUBRICS		Marks						
	emester Evaluation ESE								
•	University Examination		70						
Conti	nuous Comprehensive Assessment	CCA							
•	Examinations (multiple choice, tru	ue-false, fill-in-the-blank, matching, short answer	10						
	and critical thinking questions)								
•	Writing assignment		5						
•	Reports/ presentations/ demonstrations	ions by the students	5						
•	Internal practical examination		10						
-	Questions to test Outcomes.								
	Question (Understanding)								
	Questions (Applying and Analyzing):								
vlarks (Questions (Evaluating and Creating):								

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Rearners will be equipped with fundamental and applied knowledge of floriculture, olericulture and landscape design gnabling them to pursue careers in commercial flower and vegetable production.

22		Harden by ATherman Commercial	KU6DSEPLS315
DSE	Semester: 6	Hrs/week: 4Theory + 0 practical	Credits: 4

- 1. Knowledge in Biology at 201-199 level
- 2. Ability to write examination in English

Course Outcomes						
CO1	Ability to identify ecological processes that underpin sustainable agricultural practices.					
CO2	Gaining insight into nutrient, water, and energy flows in different agroecosystems.					
CO3	Develop skills in evaluating soil health and conservation strategies.					
CO4	Appreciate the significance of biodiversity in enhancing ecosystem resilience.					
CO5	Equipped to recommend sustainable management strategies based on agroecological principles					

Mapping of Course Outcomes to PSOs/Pos

RAR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
5CO4								V	V	$\sqrt{}$	V	
CO5					•				$\sqrt{}$	V	V	V

Course Description

This course introduces the ecological principles and practices that enhance sustainability, productivity, and biodiversity in agricultural systems.

- First module provides an understanding of the growing need for agroecological approaches to ensure food security and sustainability.
- The fundamental principles, processes, and ecological interactions that define agroecosystems are described in the second module,
- Third module examines the ecological aspects of soil, nutrient dynamics, and resource conservation for sustainable agriculture.
- Fourth highlights the role of biodiversity, traditional knowledge, and conservation initiatives in building resilient agroecosystems.

This course will provide you opportunities to enhance the quality of agroecosystems through the knowledge gained by the completion of this course.

- 10. To understand the ecological foundations underlying modern and traditional agroecosystems.
- 11. To analyze principles and concepts governing the interactions within agricultural environments.
- 12. To explore soil ecology, nutrient dynamics, and water management strategies in agroecosystems.
- 13. To examine the importance of agrobiodiversity conservation and its role in sustainable food systems.
- apply ecological knowledge for the design and management of resilient and sustainable farming systems.

	Credit		Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	1	4		5	30	70	100
--	---	---	---	--	---	----	----	-----

COURSE CONTENT

Module 1: Foundations of Agroecology (12 Hours)

- 1.1. Human population growth and its impact on agricultural systems: Malthusian principle
- 21.2. Food security and food safety: challenges and opportunities. Need of sustainable agroecosystems for the food safety.
- 21.3. Sustainable agroecosystems for food safety and long-term productivity
- \$1.4. Significance, scope, and interdisciplinary nature of agroecosystem studies

Module 2: Principles and Concepts in Agroecology (12 Hours)

- 2.1.Principles and characteristics of agroecosystems: case studies (paddy, forest gardens, plantations).
- 2.2.Energy flow, water, and nutrient cycling in agroecosystems.
- 2.3. Pest and weed ecology, population dynamics, and integrated pest management (IPM).
- 2.4.Comparative productivity and sustainability of various agroecosystems

Module 3: Soil Ecology and Resource Management (12 Hours)

- 3.1. Soil types, properties, and classification in relation to agroecosystem function
- 3.2. Nutrient cycling: macro and micronutrients, pH balance, nitrogen and decomposition processes
- 23.3. Soil health, beneficial organisms, and nutrient management strategies
- 3.4. Soil and water conservation: contour farming, cover cropping, windbreaks, and buffers

Module 4. Agrobiodiversity and Conservation for Sustainability (12 Hours

- 54.1. Indigenous crop varieties and biodiversity conservation (rice, pepper, coconut, banana, mango, etc.).
- 4.2. Landscape ecology, habitat management, and impacts of agriculture on biodiversity.
- \$\frac{C}{2}\$4.3. Conservation initiatives: seed banks, genetic resources, IPR, GI tagging, and Access Benefit Sharing (ABS).
- 4.4. Sustainable practices, agro-ecotourism, and case studies (e.g., EPA's Agriculture in Concert with the Environment).

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and soutcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4Hrs

Saline agroecosystems (Kaippad) and its peculiarities. Innovative ideas on paddy- prawn mixed cultivation. Hydroponics and aeroponics as an agroecosystem.

Practical 8 Hrs

- 1. Soil sampling and analysis for organic carbon, N, P and K.
- 2. Calculation of soil moisture content and water holding capacity of different soil samples
- ²3. Estimation of soil pH, EC and TDS.
- 4. Documentation of the cultivated local varieties of any two crop plants (submit report with specimens/geotagged photographs).

Suggested Assignment Topics- Theory

- 1. Diversity in cultural practices and management in various agroecosystems. (Coconut, paddy, tapioca)
- odiversity depletion and genetic erosion due to agriculture and plant breeding.

🕻 l Assignment Topics- Practical

rvey of biodiversity various agriculture lands

- 2. Agrobiodiversity documentation
- 3. Field trip to agriculture research institutes.

<u> </u>	Sl. No	Title/Author/Publishers of the Book specific to the module
e 1	1	Altieri, M.A. (1995). Agroecology: The Science of Sustainable Agriculture. Westview Press.
- Pag	2	Altieri, M.A., & Nicholls, C.I. (2017). <i>Agroecology: A Transdisciplinary, Participatory and Action-oriented Approach</i> . CRC Press.
26 PM	3	Amaresan, N., Krishna Kumar, A., Sankaranarayanan, K., Annapurna, & Senthil Kumar, M. (Eds.). (2020). <i>Beneficial microbes in agro-ecology: Bacteria and fungi</i> . Academic Press.
5 04:	4	Conway, G.R. (1987). <i>The Properties of Agroecosystems</i> . Agricultural Systems, 24(2), 95–117.
-Dec-202	5	Drinkwater, L.E., & Snapp, S.S. (2007). <i>Nutrient Cycling in Agroecosystems: Balancing Food and Environmental Objectives</i> . Frontiers in Ecology and the Environment, 5(5), 303–311.
on 19	6	FAO (2018). The 10 Elements of Agroecology: Guiding the Transition to Sustainable Food and Agricultural Systems. Food and Agriculture Organization of the United Nations.
MIC)	7	Gliessman, S.R. (2015). Agroecology: The Ecology of Sustainable Food Systems. CRC Press.
CADE	8	Gliessman, S.R., & Rosemeyer, M. (2010). <i>The Conversion to Sustainable Agriculture: Principles, Processes, and Practices.</i> CRC Press.
RAR (A	9	Harlan, J. R., Gepts, P., Famula, T. R., Bettinger, R. L., Brush, S. B., Damania, A. B., McGuire, P. E., & Qualset, C. O. (Eds.). (2012). <i>Biodiversity in agriculture: Domestication, evolution, and sustainability</i> . Cambridge University Press.
EGIS	10	Jackson, W. (2002). <i>Natural Systems Agriculture: A Truly Radical Alternative</i> . Agriculture, Ecosystems & Environment, 88(2), 111–117.
TYR	11	Kremen, C., & Miles, A. (2012). Ecosystem Services in Biologically Diversified versus Conventional Farming Systems. Ecology and Society, 17(4), 40.
DEPU	12	Lal, R. (2015). Restoring Soil Quality to Mitigate Soil Degradation. Sustainability, 7(5), 5875–5895.
ed by	13	Madden, J. P. (2024). <i>The early years: Historical timeline</i> . Sustainable Agriculture Research & Education (SARE).
Approv	14	Nayar, N. M. (2011). Agrobiodiversity in a biodiversity hotspot: Kerala State, India—its origin and status. <i>Genetic Resources and Crop Evolution</i> , 58(1), 55–82. https://doi.org/10.1007/s10722-010-9582-8
024	15	Odum, E.P. (1971). Fundamentals of Ecology. Saunders College Publishing.
2/0	16	Paul, A., & Wojtkowski, P. A. (2004). Landscape agroecology. Haworth Press.
3/2100	17	Perfecto, I., Vandermeer, J., & Wright, A. (2009). <i>Nature's Matrix: Linking Agriculture, Conservation and Food Sovereignty</i> . Earthscan.
AD C	18	Pretty, J. (2008). <i>Agricultural Sustainability: Concepts, Principles and Evidence</i> . Philosophical Transactions of the Royal Society B, 363(1491), 447–465.
of File ACAD C/ACAD	19	Robertson, G. P., Gross, K. L., Hamilton, S. K., Landis, D. A., Schmidt, T. M., Snapp, S. S., & Swinton, S. M. (2014). Farming for ecosystem services: An ecological approach to production agriculture. <i>BioScience</i> , 64(5), 404–415. https://doi.org/10.1093/biosci/biu037
e AC/	20	Sangeetha, J., Thangadurai, D., & Islam, S. (Eds.). (2020). <i>Beneficial microbes for sustainable agriculture and environmental management</i> . CRC Press.
r of Fi	21	Swift, M.J., & Anderson, J.M. (1993). <i>Biodiversity and Ecosystem Function in Agricultural Systems</i> . In Schulze & Mooney (Eds.), <i>Biodiversity and Ecosystem Function</i> . Springer.
Order	22	Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R., & Polasky, S. (2002). <i>Agricultural Sustainability and Intensive Production Practices</i> . Nature, 418, 671–677.
ersity	23	Warner, K. D. (2007). Agroecology in action: Extending alternative agriculture through social networks. MIT Press.
		Zhang, W., Ricketts, T. H., Kremen, C., Carney, K., & Swinton, S. M. (2007). Ecosystem services and dis-services to agriculture. <i>Ecological Economics</i> , 64(2), 253–260. https://doi.org/10.1016/j.ecolecon.2007.02.024

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing

² age 122	 Collaborative learning-Group discussion
σ.	
ΡM	ASSESSMENT RUBRICS
04:56 PM	End Semester Evaluation ESE
5 04	 University Examination
025	Continuous Comprehensive Assess

	ICT
\triangleright	Practical sessions with

Practical sessions with
demonstrations and hands on
experiences

ASSESSMENT RUBRICS	Marks				
End Semester Evaluation ESE					
University Examination	50				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10				
Writing assignment	5				
Reports on various agroecosystems	5				
Presentations and viva	10				
nple Questions to test Outcomes.					

Marks Question (Understanding)
Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course enhances the employability in sectors such as agricultural research, environmental consulting, agri-based industries, natural resource management, NGOs, and governmental organizations promoting sustainable development and

23	ETHNO	KU6DSEPLS316	
DSE	Semester: 6	Hrs/week: 4 Theory	Credits: 4

- 1. Knowledge in Biology at 201-199 level
- 2. Ability to write examination in English

Course Ou	tcomes
CO1	Recognize the cultural and ecological significance of traditional plant use.
CO2	Ability to identify key ethnobotanical practices and their relevance in modern society.
CO3	Understanding the value and process of documentation methods for indigenous knowledge.
CO4	Assess case studies of successful ABS implementation in India and globally.
CO5	Students will develop ethical perspectives for sustainable utilization of biological resources.

Mapping of Course Outcomes to PSOs/Pos

515	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
Есоз							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
<u></u> €CO5									1	V	V	V

Course Description

This undergraduate course explores the intricate relationships between people and plants, emphasizing the ethnobotanical heritage of India with an emphasis to Kerala.

- First module introduces the foundation of ethnobotany, its evolution, and its role in bridging cultural knowledge and modern science.
- Second module explores traditional plant use in India with a special emphasis on Kerala's indigenous cultures and ecosystems.
- Third module focuses on the applied dimensions of ethnobotany in medicine, food, and industry, and its role in sustainable development.
- Fourth module discusses policy frameworks and success stories in Access and Benefit Sharing (ABS) for equitable and sustainable use of traditional resources.

This course will provide opportunities to think and act on various contemporary approaches of biocultural conservation and benefit sharing.

- 1. To understand the origin, scope, and interdisciplinary nature of ethnobotany.
- 2. To document and interpret traditional plant knowledge systems in India and Kerala.
- analyze ethnomedicinal practices and socio-cultural dimensions of plant use among tribal communities. evaluate Access and Benefit Sharing (ABS) mechanisms and biocultural rights in sustainable resource
- 5 foster awareness on the integration of traditional ecological knowledge in modern conservation strategies.

75 Credit			Teaching H	Hours Assessment			
T/L/age	P/I	Total	L/T/P	Total	CCA	ESE	Total
4 - Md	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

COURSE CONTENT

Module 1: Introduction to Ethnobotany 13 hrs

- \$\frac{1}{1}.1.Definition, history, and scope of ethnobotany the interface between plants and people. local and global food systems, cultural and social aspects of food.
- 1.2. Methods in ethnobotanical research: field surveys, participatory rural appraisal (PRA), herbarium techniques, and digital documentation. traditional knowledge protection trhough Traditional Knowledge Digital Library Unit (TKDL). Traditional Ecological Knowledge Mapping (TEK).
- 3.3. Ethnobotany as an interdisciplinary science Role of ethnobotany in taxonomy, pharmacognosy, and conservation biology. Role of ethnobotany in art, craft, ecology, conservation and sustainable development.
- 1.4.Global perspectives in ethnobotany: contributions from India and worldwide pioneers (J.W. Harshberger, E.K. Schultes, S.K.Jain)

Module 2: Ethnobotany in India and Kerala 13 Hours

- £2.1.Ethnobotanical diversity in India: A brief account of the tribes of India. Regional variations and ²cultural heritage.
- 2.2. Major tribal groups of Kerala (Irulas, Adiyan, Koraga, Kurichiyas, Kani, Cholanaikan, Kadar, Kurumba, Kuruman, Paniyas, Ulladan).
- 2.3. Plant-based livelihood, healing practices, and rituals: Wild food plants, intoxicants, beverages, cresins, oils and dyes, plants and plant products used in rituals, ceremonies and magico-religious beliefs
- ₹2.4. traditional ecological knowledge in agriculture and Conservation; indigenous farming systems. Sacred groves (Kavus) and biocultural landscapes of Kerala as models of in situ conservation.

Module 3: Applied and Medicinal Ethnobotany 12 Hours

- 3.1.Ethnomedicine: traditional healers, ethnopharmacology, and validation of herbal remedies. Ethnomedicobotany and ethnopharmacology Ethnomedicine systems: Ayurveda, home remedies, and folk medicine. reverse pharmacology
- 3.2. Ethnobotany of food plants, spices, dyes, fibers, and aromatic species.
- \$3.3.Bioprospecting: Types of bioprospecting: Chemical prospecting; Gene prospecting; bionic prospecting. Bioprospecting and conservation. Regulations of bioprospecting. Bioprospecting and sustainable development. .
- 53.4. Community-based resource management: AICRPE-All India Coordinated Research Project on Ethno biology, FRLHT- Foundation for the Revitalisation of Local Health Traditions.

Module 4: ABS and Conservation of Ethnobotanical Heritage 10 Hours

- 4.1.Biological Diversity Act (2002), Nagoya Protocol, and institutional frameworks for ABS.
- 4.2. ABS and biopiracy. Concepts of ABS and Biopiracy. Case studies of successful ABS models: Kani Tribe & Jeevani (Kerala), Hoodia (South Africa), and Indian biodiversity initiatives.
- 4.3.Role of Biodiversity Management Committees (BMCs) and People's Biodiversity Registers
- 4.4. Future prospects: integrating traditional ecological knowledge with modern biotechnological and conservation strategies.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of Ethe course; which will be determined by the concerned teacher. Assessment for this module is *strictly*

ions of E.K.Janakiammal, K.S.Manilal, V.V Sivarajan & P. Pushpangadan. Biodiversity ion by indigenous groups; role of ethnic groups in conservation of plant genetic resources

Practicals 8Hrs

1. Conduct a field visit to a major sacred grove of the nearby area and submit a report on its

floristic diversity and ecology.

- 2. Prepare voucher specimens of at least 10 wild plants of ethnobotanic interest.
- 3. Conduct a field survey to record ethnobotanical/traditional knowledge from the nearby ethnic population, and submit the report.

Suggested Assignment Topics- Theory

- Suggested Assignment Topics- Theory

 1. Major ethnomedcines of Kerala and
 2. Tribes of North Kerala
 3. Medcines used in Kalrippayattu
 4. Theyyam and dye yielding plants

 suggested Assignment Topics- Practical
 1. Survey on plants used by Northern I
 2. Folk medcines used in Balachikilsa,
 3. Folkmedicines used for burns

 SI. No. Title/Author/Publishers of the Major ethnomedcines of Kerala and their uses

- 1. Survey on plants used by Northern Kerala- in Kalarippayattu, Theyyam
- 2. Folk medcines used in Balachikilsa, vishachikilsa and Nethra chikilsa

SI. No	Title/Author/Publishers of the Book specific to the module
< 1 1 × 1	Balick, M. J., & Cox, P. A. (1996). Plants, people, and culture: The science of ethnobotany.
X T	Scientific American Library.
<u>⊬</u> 2	Cotton, C. M. (1996). Ethnobotany: Principles and applications. John Wiley & Sons.
REGIS 3	Cunningham, A. B. (2001). Applied ethnobotany: People, wild plant use, and conservation. Earthscan.
<u>↓</u> 4	Gadgil, M., & Berkes, F. (1991). Traditional resource management systems. Resource Management and Optimization, 18(3–4), 127–141.
DEP 2	Hamilton, A. C. (2004). Medicinal plants, conservation and livelihoods. Biodiversity and Conservation, 13(8), 1477–1517.
1 by	Jain, S. K. (1995). A manual of ethnobotany (2nd ed.). Scientific Publishers.
7 7	Kumar, B. M., & Nair, P. K. R. (2004). The enigma of tropical homegardens. Agroforestry Systems, 61(1–3), 135–152.
Ар 8	Martin, G. J. (2004). Ethnobotany: A methods manual. Earthscan.
1060/2024/Approved by 8 8 9 10	Nayar, N. M. (2011). Agrobiodiversity in a biodiversity hotspot: Kerala State, India—its origin and status. Genetic Resources and Crop Evolution, 58(1), 55–82.
10	Pandey, A. K., & Tripathi, N. N. (2017). Ethnobotany and medicinal plants of India and Nepal. Scientific Publishers.
11	Pei, S., & Huai, H. (2007). Ethnobotany and modernization of traditional Chinese medicine. Ethnobotany Research & Applications, 5, 147–153.
12 12	Pushpangadan, P., & Rajasekharan, S. (2012). Ethnobiology and traditional medicine of India. NISCAIR-CSIR.
O 13	Rama Rao, N., & Henry, A. N. (1996). <i>The ethnobotany of Eastern Ghats in Andhra Pradesh, India</i> . Botanical Survey of India.
¥ 14	Shashi, S. S. (2004). Tribes of Kerala. Anmol Publications Pvt. Ltd.
13 V 14 EII 15	Singh, K. K., & Kumar, K. (2018). Ethnobotany and medicinal plants of India and Nepal, Vol. 2. Scientific Publishers.
Jap 16	Sinha, R. K. (1996). <i>Ethnobotany: The renaissance of traditional herbal medicine</i> . INA—Shree Publishers.
17	Swiderska, K., Argumedo, A., Song, Y., Li, J., Pant, R., & Herrera, H. (2011). The role of traditional knowledge and Access and Benefit Sharing in climate adaptation. IIED Report.
7 0 0	Venkataraman, K., & Faizi, S. (2019). Success stories in Access and Benefit Sharing from India. Current Science, 117(10), 1583–1589.

ó	CHING LEARNING STRATEGIES	MODE OF TRANSACTION
	Hands-on experiments	Lecturing
	Collaborative learning-Group	> ICT

discussion	 Practical sessions with demonstrations and hands on experiences 	
SSESSMENT RUBRICS		

<u>-</u> ا	ASSESSMENT RUBRICS	Marks					
P							
04:56	University Examination						
ec-2025	• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10					
0-D	Writing assignment	5					
on 1	Reports on local medicinal plants	5					
()	Presentations and viva voce	10					
	ample Questions to test Outcomes.						
	Marks Question (Understanding)						
6	Marks Questions (Applying and Analyzing):						
	Marks Questions (Evaluating and Creating):						
\$4	4 Marks Questions (Evaluating and Creating):						

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

The course enhances students' prospects in careers related to ethnobotanical research, biodiversity conservation, herbal The course enhances students' prospects in careers related to ethnobotanical restandustries, natural product development, policy analysis, and community-based valuable for NGOs, research institutions, and governmental biodiversity programs. industries, natural product development, policy analysis, and community-based resource management, fostering skills

on 19-Dec-2025 04:56 PM - Page 126

24	Pharmacognosy a	Pharmacognosy and Phytochemistry			
DSE	Semester: 6	Hrs/week: 4 Theory	Credits: 4		

- 1. Knowledge in Biology at 201-199 level
- Ability to write examination in English

Course	Course Outcomes							
CO1	Comprehend the fundamental concepts and classifications in pharmacognosy.							
CO2	Identify biological sources and uses of primary and secondary metabolites.							
CO3	Apply analytical and chromatographic techniques for drug characterization.							
CO4	Relate pharmacognostic knowledge to diverse traditional medical systems.							
CO5	Evaluate quality assurance protocols and WHO guidelines for herbal drugs.							

Mapping of Course Outcomes to PSOs/Pos

TRÁ	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
₩co2			$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark						
_CO3							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
₽CO4								\checkmark	√	$\sqrt{}$	\checkmark	
CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This undergraduate course provides an integrated understanding of drugs of natural origin—their sources, constituents, extraction methods, evaluation, and roles in traditional and modern

- First module introduces the history, scope, sources, and classification of drugs of natural origin, forming the base for pharmacognostic studies.
- Second module focuses on biological sources, chemistry, and pharmaceutical importance of primary and secondary plant metabolites and related products.
- Third module emphasizes modern extraction and analytical tools used in isolating, identifying, and evaluating drugs of natural origin.
- Fourth module integrates pharmacognosy with diverse medical systems and emphasizes WHO guidelines for standardization and safety of herbal drugs.

This course will help the student to become more enthusiastic towards the medicinal value of

- 1. To understand the origin, scope, and significance of pharmacognosy in the development of natural
- To study various natural sources of drugs and their classification.
 - learn about metabolites, their chemistry, sources, preparation, and pharmaceutical uses. understand methods for evaluating and ensuring the quality and purity of crude drugs.
 - gain knowledge of extraction, characterization, and principles of major systems of medicine.

Credit			Teaching H	[ours	Assessment		
L/T P/I Total		L/T/P	Total	CCA	ESE	Total	
Bad -	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

P

COURSE CONTENT

Module 1: Foundations and Sources of Pharmacognosy 12 Hour

- 21.1. Definition, history, and development of pharmacognosy.
- \$1.2. Sources of natural drugs: plant, animal, marine, and tissue culture origins.
- \$\frac{1}{0}\$1.3. Classification of crude drugs: alphabetical, morphological, taxonomical, chemical, and \$\frac{1}{0}\$pharmacological systems.
- 1.3. Organized and unorganized drugs: dried latex, juices, extracts, gums, mucilages, oleoresins, and Foleo-gum-resins.

Module 2: Natural Products and Metabolites 12 Hours

- 2.1. Primary metabolites: carbohydrates (acacia, agar, honey), proteins and enzymes (gelatin, papain, pepsin, serratiopeptidase), lipids (castor oil, beeswax, wool fat).
- 2.2. Secondary metabolites: alkaloids, glycosides, flavonoids, tannins, volatile oils, and resins classification and identification tests.
- \$2.3. Plant products and fibers: cotton, jute, hemp; hallucinogens, teratogens, and natural allergens.
- 2.4. Marine drugs and bioactive agents from oceanic sources

2Module 3: Extraction, Characterization, and Evaluation Techniques 12 Hours

- 3.1. Extraction methods: cold maceration, percolation, Soxhlet, Clevenger apparatus.
- 23.2. Chromatographic techniques: TLC, paper chromatography, column chromatography.
- -3.3. Instrumental methods: HPLC, GC, GC-MS, LC-MS in drug characterization.
- 3.4. Evaluation of natural drugs: organoleptic, microscopic, physical, chemical, and biological methods; adulteration detection

Module 4: Systems of Medicine and Quality Assurance 12 Hours

- 54.1. Principles of major systems of medicine: Allopathic, Ayurveda, Unani, Siddha, Homeopathy, and Chinese systems.
- 4.2. WHO guidelines for herbal drug standardization and quality control.
- 4.3. Good Agricultural and Collection Practices (GACP) and Good Manufacturing Practices (GMP) for herbal products.
- 4.4. Adulteration control, toxicological evaluation, and safety assessment of natural drugs.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4Hrs

Adulteration in medicinal plants. Medicines from plants – successful stories from Kerala.

Practicals 8Hrs

- 1.Documentaion of medicinal plants
- 2. Internship in a pharmaceutical industry
- ² ∴ visit to well equipped phytochemical lab.

Suggested Assignment Topics- Theory

- 1. Folk medicines and single remedies
- 2. Major medicinal plants of our premises
- 3. Phytochemistry of medicinal plants

1 Assignment Topics- Practical

sit to quality testing labs

- Z. Collection of reports on drug adulteration
- 3. Anatomical study of medicinal plants.

r of Fil

Sl. No	Title/Author/Publishers of the Book specific to the module					
_Φ 1	Ali, M. (2012). Pharmacognosy and phytochemistry. CBS Publishers.					
φ 1 φ 2	Chatwal, G. R., & Anand, S. K. (2011). <i>Instrumental methods of chemical analysis</i> . Himalaya Publishing House.					
3 99 4 27 5 6	Cordell, G. A. (2017). <i>Natural products drug discovery in the 21st century</i> . Academic Press.					
\$0 4 \$2 4	Cox, P. A., & Balick, M. J. (1994). The ethnobotanical approach to drug discovery. <i>Scientific American</i> , 270(6), 82–87.					
<u> </u>	Daniel, M. (2006). Medicinal plants: Chemistry and properties. Science Publishers.					
0-6 6	Evans, W. C. (2009). <i>Trease and Evans pharmacognosy</i> (16th ed.). Saunders Elsevier.					
5 7	Farnsworth, N. R. (1990). The role of ethnopharmacology in drug development. <i>Bioactive Compounds from Plants, Ciba Foundation Symposium, 154</i> , 2–21.					
(ACADEMIC) 8 8	Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Chapman & Hall.					
	Heinrich, M., Barnes, J., Gibbons, S., & Williamson, E. (2012). Fundamentals of pharmacognosy and phytotherapy (2nd ed.). Churchill Livingstone.					
₩ 10 ₩ 10 ₩ 10	Kokate, C. K., Purohit, A. P., & Gokhale, S. B. (2015). <i>Pharmacognosy</i> (50th ed.). Nirali Prakashan.					
5 11	Krishnamurthy, K. V. (2010). Methods in cell wall cytochemistry. CRC Press.					
≥ 12	Khandelwal, K. R. (2015). Practical pharmacognosy: Techniques and experiments. Nirali Prakashan.					
13	Mukherjee, P. K. (2002). <i>Quality control of herbal drugs: An approach to evaluation of botanicals</i> . Business Horizons.					
nd pe 14	Ncube, B., Finnie, J. F., & Van Staden, J. (2012). Quality control of herba medicines. <i>South African Journal of Botany</i> , 82, 101–107.					
² 15	Pandey, B. P. (2010). <i>Pharmacognosy</i> . S. Chand Publishing.					
14 15 16 17 17	Rama Rao, N., & Henry, A. N. (1996). <i>The ethnobotany of Eastern Ghats in Andhra Pradesh, India</i> . Botanical Survey of India.					
67/09/17	Sarker, S. D., Latif, Z., & Gray, A. I. (2006). <i>Natural products isolation</i> (2nd ed.). Springer.					
N 18	Shashi, S. S. (2004). <i>Tribes of Kerala</i> . Anmol Publications Pvt. Ltd.					
	Sethi, P. D. (1996). High performance thin layer chromatography (HPTLC): Quantitative analysis of pharmaceutical formulations. CBS Publishers.					
20	Sinha, R. K. (1996). <i>Ethnobotany: The renaissance of traditional herbal medicine</i> . INA–Shree Publishers.					
21 V 21	Sofowora, A. (1993). <i>Medicinal plants and traditional medicine in Africa</i> . Spectrum Books Ltd.					
⊕ 22	Tyler, V. E., Brady, L. R., & Robbers, J. E. (1988). <i>Pharmacognosy</i> . Lea & Febiger.					
23	Wagner, H., & Bladt, S. (2009). Plant drug analysis: A thin layer chromatography atlas. Springer.					
20 21 22 23 24 25 25 25	WHO. (2000). General guidelines for methodologies on research and evaluation of traditional medicine. World Health Organization.					
9 25	WHO. (2003). Guidelines on good agricultural and collection practices (GACP) for medicinal plants. World Health Organization.					
	SHING LEADNING CEDATE CHEC					

CHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with

Visit to labs	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination		70			
Continuous Comprehensive Assessment CCA					
 Examinations (multiple choice, true and critical thinking questions) 	ue-false, fill-in-the-blank, matching, short answer	10			
 Writing assignment 		5			
 Reports on drugs 		5			
 Presentations and viva voce 		10			
nple Questions to test Outcomes.					
farks Question (Understanding)					
Iarks Questions (Applying and Analyzing):Iarks Questions (Evaluating and Creating):					

- 44 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course develops skills in natural product research, herbal drug formulation, quality control, and phytochemical analysis, preparing students for employment in pharmaceutical industries, research laboratories, herbal product manufacturing, regulatory agencies, and academia.

by

25	Inter	Internship				
INT	Semester: 6	Hrs/week:	Credits: 2			

Course Pre-requisite:

- 1. Knowledge in Biology at 201-199 level
- 2. Ability to write examination in English

Course Ou	tcomes
CO1	
CO2	
CO3	
CO4	
CO5	

Mapping of Course Outcomes to PSOs/Pos

KAR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1												
CO2												
CO3												
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									V	V	V	V

Course Objectives: 1. To engage with the control of the course of the c

- To engage with practical aspects of botany and allied branches.
- To increase the learning of botany more meaningful
- 3. To enhance the employability.

1060/	Credit		Teaching H	ours		Assessment	
Č/L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
CAD 0	2	2	0+ 0+ 4 (0+ 0 + 15)	4	15	35	50

COURSE CONTENT

Gach student must complete an internship within the six semesters to engage with practical aspects of their rearning and enhance employability. A report is required by the end of the sixth semester. The internship ី ក្លាust last a *minimum of 60 working hours* and can be **on-campus or off-campus**, potentially **consisting** Of 1-3 accumulated activities.

ous internships require prior approval, and an attendance certificate must be submitted to upon rejoining. HoDs ensure completion of the internship.

Suggested Internships: Summer internships at biology institutes or local industries related to Botany/ecology/agriculture, field trips to various ecosystems or nature camps, apprenticeships in NGOs or relevant industries, and social responsibility activities such as river restoration, PBR preparation, andscaping, and green auditing.

Student Responsibilities: Selecting the internship topic/activity, discussing with a mentor, planning and execution, and preparing and presenting the report.

Eeacher/Supervising Guide Responsibilities: Confirming the topic/activity, providing guidance, and ⊙ ₹orrecting and certifying the prepared report.

MODE OF TRANSACTION
ICT powerpoint presentation
Report on internship
Practical sessions with
demonstrations and hands on
experiences
Viva Voce

The components of internship evaluation in include performance evaluation, attendance and participation, the quality of the internship report, and the effectiveness of the presentation. Additional components are the viva Spoce examination, feedback from the internship site, self-assessment, and, if applicable, peer assessment. Continuous Comprehensive Assessment (CCA) will be conducted by the faculty in charge, while the End Semester

ASSESSMENT RUBRICS	Mark
End Semester Evaluation ESE (70%)	
University Examination- Report preparation, presentation and Viva voce	35
Continuous Comprehensive Assessment CCA (30%)	
Report	5
• Viva	5
• Presentations	5

The interest in choosing the internship programme is reflecting the attitude of the student towards job and research h botany/plant science /life science.

26	Advanced course in Plan	KU7DSCPLS401	
DSC	Semester: 7	Hrs/week: 4 Theory	Credits: 4

- 5. Knowledge in Biology at 301-399 level
- 6. Ability to write examination in English

Course Ou	itcomes
CO1	Demonstrate in-depth knowledge of key developmental processes in angiosperms, including gametophyte formation, embryo patterning, seed/fruit maturation and reproductive alternatives (apomixis, polyembryony).
CO2	Be able to integrate molecular, hormonal, epigenetic and cellular regulatory mechanisms with developmental phenomena in plants.
CO3	Show competence in understanding evolutionary and comparative developmental frameworks and how they relate to morphological and reproductive diversity in plants.
CO4	Be capable of analysing how environmental, temporal and physiological signals (light, circadian clock, stress, regeneration) regulate plant developmental outcomes.
CO5	Be prepared to engage in research or applied work (breeding, biotechnology, crop improvement) by linking developmental biology with practical plant science applications.

Mapping of Course Outcomes to PSOs/Pos

DEP	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
≧CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
©CO2			√	V	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$		\checkmark	\checkmark		
₹CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5					•				$\sqrt{}$	V	V	V

Course Description

This course provides an integrative and advanced study of plant developmental biology.

- First module is dealing with the developmental processes of angiosperms from gametogenesis through fertilization, embryo and endosperm formation, seed and fruit development, and the special cases of apomixis and polyembryony.
- Second module delves into the cellular and molecular control of plant development
- Third module examines how developmental genetics, gene regulatory networks, genome evolution and evolutionary developmental (Evo-Devo) approaches shape plant form and development across angiosperms.
- The final module deals with how environmental cues, light, circadian rhythms, stress and regeneration integrate with developmental programs to control plant growth, form and developmental transitions.

This course will provide opportunities to comprehend the molecular events and its regulation places high high is the foundation of plants and its developments.

bjectives:

Explain the molecular and genetic mechanisms underlying gametogenesis, double fertilization, embryogenesis, endosperm formation, seed and fruit development in angiosperms.

- 16. Describe the roles of meristematic stem-cell niches, hormonal signalling networks, epigenetic and cell-to-cell communication mechanisms in plant development.
- 17. Critically evaluate the evolutionary and developmental (Evo-Devo) processes and genome-level events (e.g., gene duplication, polyploidy) that have shaped plant morphology and reproduction.
- 18. Analyse how physiological and temporal regulatory systems (such as photomorphogenesis, circadian rhythms, stress responses and regeneration/totipotency) influence plant developmental pathways.
- 19. Apply current developmental, molecular and biotechnological concepts (e.g., hormone regulation, gene editing, apomixis, somatic embryogenesis) in the context of plant breeding, crop improvement or research.

)ec-2	Credit		Teaching H	[ours		Assessment	
<u>6</u> L/T	P/I	Total	L/T/P Total		CCA	ESE	Total
uo (Oll	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

COURSE CONTENT

Module 1: Angiosperm Embryology and Reproductive Development 12 hrs

- 1.1.Gametogenesis and Double Fertilization: Molecular and genetic control of gametophyte development and signaling between male and female gametophytes. Mechanisms of double fertilization—sperm—egg and sperm—central cell interactions, signaling pathways, and fusion events. Regulation by transcription factors and hormones during gamete formation and fertilization.
- 1.2. Embryo Development: Zygotic embryogenesis, pattern formation, and polarity establishment; morphogen gradients and developmental stages—proembryo, globular, heart-shaped, torpedo, and mature embryo. Apical—basal and radial patterning; roles of auxin gradients and transcription factors (WOX, LEC, FUS) in embryo patterning and polarity.
- 21.3. Seed and Fruit Development: Genetic, hormonal, and epigenetic regulation of seed maturation, desiccation tolerance, dormancy, and germination. Coordination of ABA and GA signaling; transcription factors (LEC, FUS, ABI) in seed development. Fruit morphogenesis and hormonal crosstalk (auxin–ethylene–cytokinin) during fruit set and ripening.
- 1.4. Apomixis and Polyembryony: Asexual seed formation—mechanisms of diplospory, apospory, and adventitious embryony. Molecular basis of apomixis, bypassing meiosis and fertilization; genetic and epigenetic regulation. Evolutionary significance and biotechnological applications in clonal propagation and hybrid seed production.

Module 2: Cellular and Molecular Regulation of Plant Development 12 hrs

- 2.1 Stem Cell Niches and Meristem Function: Shoot and root apical meristem organization; stem cell maintenance and organogenesis. SAM/RAM activity, lateral organ initiation, and regulation through WUS-CLV feedback loops and KNOX gene networks. Genetic and hormonal control of meristem identity and differentiation.
- 2.2.Hormonal Crosstalk and Signal Integration: Auxin, cytokinin, gibberellin, ethylene, and abscisic acid biosynthesis, signaling, and transport. Role of PIN proteins, ARFs, and DELLA proteins in signaling cascades and feedback regulation. Hormonal crosstalk and integration in Forgan initiation, patterning, and phase transitions
- 2. 3. Epigenetic Regulation in Development: DNA methylation, histone modification, chromatin remodeling, and small RNA pathways (miRNA, siRNA) in developmental control. Polycomb-group proteins, imprinting, and epigenetic memory in phase transitions and nental plasticity.
- nental plasticity.

 nental plasticity.

 to-Cell Communication and Polarity: Plasmodesmata-mediated transport, peptide

 to, and intercellular communication in development. Establishment of auxin gradients,

 symplastic transport, and positional information for polarity and organ patterning

12 hrs

- 3.1. Developmental Genetics and Model Systems: Genetic regulation of development using Arabidopsis thaliana, Oryza sativa, and Medicago. Forward and reverse genetics, mutant analysis, and CRISPR-based gene editing.
- 3.2. Molecular Basis of Evolutionary Innovations: Evolution of flowers, fruits, and seed structures; role of gene duplication, diversification, and regulatory rewiring. MADS-box gene function in organ identity and developmental innovations.
- 3.3. Comparative Development and Evo-Devo: Comparative embryology and gene expression fanalyses linking genotype to phenotype. Evolutionary developmental biology perspectives on serial homology and morphological evolution.
- 3.4. Genome Evolution and Developmental Plasticity: Epigenetic and environmental regulation of developmental plasticity. Gene dosage effects, epialleles, and modularity in evolutionary adaptation.

Module 4. Physiological and Temporal Control of Development 12 hrs

- 4.1. Photomorphogenesis and Light-Regulated Development: Light perception and photoreceptor signaling (phytochromes, cryptochromes, phototropins). Photomorphogenic responses—etiolation, de-etiolation, shade avoidance, and flowering induction. Integration of elight, hormonal, and genetic pathways via COP1 and HY5 regulation.
- 4.2. Biorhythms and Circadian Regulation: Circadian clock components and gene regulatory circuits (TOC1, CCA1, LHY). Oscillations in gene expression controlling growth, hormone production, and flowering. Temporal coordination of physiology, metabolism, and developmental transitions.
- 2.4.3. Environmental and Stress-Induced Development: Developmental plasticity under abiotic and biotic stresses. Stress perception and signal transduction pathways integrating ROS, ABA, and transcriptional networks. Cross-talk between stress and developmental pathways in adaptive morphogenesis.
- 4.4. Regeneration and Totipotency: Molecular basis of totipotency and its applications in plant tissue culture and biotechnology.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and coutcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 12 Hrs

Basics in development of plants: Basic morphological, anatomical biochemical changes involved in root stem, leaf and flower development. Structure and development pattern in microsporangium and megasporangium, double fertilisation and triple fusion; post fertilisation changes and endosperm development. Fruit and seed development: morphological, anatomical and biochemical changes.

Regeneration and Totipotency: Molecular basis of totipotency and its applications in plant ptissue culture and biotechnology.

Suggested Assignment Topics- Theory

- 1. Leaf development
- 2. Stem development from plumule
- 3. Laf development
- 4. Flower developments and factors affecting
- 5. Root and pneumatophore development

al Assignment Topics- Practical

nbryo rescue technique
llus culture
ther culture

17. Application of hormones for flowering, fruit retention and development, etc.

persity Order of File A.

	Sl. No	Title/Author/Publishers of the Book specific to the module
36		Chen, XY., & Kim, JY. (2006). Transport of macromolecules through plasmodesmata
- Page 136	1	and the phloem. Physiologia Plantarum, 126(4), 560-571. https://doi.org/10.1111/j.1399-
adi)	<u>3054.2006.00630.x</u>
Г.		Dresselhaus, T., & Jürgens, G. (2021). Comparative embryogenesis in angiosperms:
\mathbb{N}	2	Activation and patterning of embryonic cell lineages. Annual Review of Plant Biology, 72,
96 F		641–676. https://doi.org/10.1146/annurev-arplant-082520-094112
4:5		Evans, M. M. S., & Barton, M. K. (1997). Genetics of angiosperm shoot apical meristem
5 0	3	development. Annual Review of Plant Biology, 48, 673–701.
202		https://doi.org/10.1146/annurev.arplant.48.1.673
C-2	_	Hake, S., Smith, H. M., Holtan, H., Magnani, E., Mele, G., & Ramirez, J. (2004). The role
-De	4	of KNOX genes in plant development. Annual Review of Cell and Developmental
19		Biology, 20, 125-151.
on	5	Hojsgaard, D. (Ed.). (2021). Molecular basis of apomixis in plants. MDPI Books.
\hat{O}		https://doi.org/10.3390/books978-3-0365-1507-6
M	C	Hudson, M. E., & Quail, P. H. (2011). Rapid, organ-specific transcriptional responses to
DE	6	light regulate photomorphogenic development in dicot seedlings. Plant Physiology, 156(4), 2124-2140. https://doi.org/10.1104/pp.111.179416
CA		Laurie, J. D. (2013). Epigenetic regulation of repetitive DNA through mitotic asynchrony
(A	7	following double fertilization in angiosperms. arXiv preprint.
AR		Niu, Y., Figueroa, P., & Browse, J. (2011). Light promotes jasmonate biosynthesis to
TR	8	regulate photomorphogenesis in Arabidopsis. Journal of Experimental Botany, 62(6),
318	Ū	2143–2154. https://doi.org/10.1093/jxb/erq408
ZE(Specht, C. D., & Bartlett, M. E. (2009). Flower evolution: The origin and subsequent
Y	9	diversification of the angiosperm flower. Annual Review of Ecology, Evolution, and
\Box	_	Systematics, 40, 217–243. https://doi.org/10.1146/annurev.ecolsys.110308.120203
品	4.0	von Arnim, A., & Deng, XW. (1996). Light control of seedling development. Annual
	10	Review of Plant Biology, 47, 215–243. https://doi.org/10.1146/annurev.arplant.47.1.215
2024 Approved by DEPUTY REGISTRAR (ACADEMIC) on 19-Dec-2025 04:56 PM	11	Acquaah, G. (2012). Principles of Plant Genetics and Breeding (2nd ed.). Wiley-
0.0		Blackwell.
ppr	12	Barresi, M., & Gilbert, S. F. (2020). Developmental Biology (12th ed.). Oxford University
4 A		Press. Beck, C. B. (2005). An Introduction to Plant Structure and Development. Cambridge
02	13	University Press.
		Bhatla, S. C., & Lal, M. A. (2023). Plant Physiology, Development and Metabolism (2nd
06	14	ed.). Springer Singapore.
3/2		Cronk, Q. C. B., Bateman, R. M., & Hawkins, J. A. (Eds.). (2002). Developmental
S	15	Genetics and Plant Evolution. CRC Press.
AD	16	Dashek, W. V., & Harrison, M. (2006). Plant Cell Biology. CRC Press.
C/ACAD C3/21060/	17	Evert, R. F., & Eichhorn, S. E. (2012). Raven Biology of Plants (8th ed.). W. H. Freeman.
versity Order of File ACAD	18	Gresshoff, P. M. (1992). Plant Biotechnology and Development. CRC Press.
AC	19	Hopkins, W. G., & Hüner, N. P. A. (2008). Introduction to Plant Physiology (4th ed.).
ile		Wiley-John Wiley & Sons.
ıfΕ	20	Krishnamurthy, K. V. (2015). Plant Biology and Biotechnology: Volume I – Plant
er C		Diversity, Organization, Function and Improvement. Springer New Delhi.
)rde	21	Krishnamurthy, K. V., & Raman, A. (2015). Growth and Development in Plants (21st
S S	2 22	Century Biology and Agriculture: Textbook Series). Scientific Publishers. Leopold, A. C., & Kriedemann, P. E. (1975). Plant Growth and Development. Springer.
rsit	22	
] /e	22	Mauseth, J. D. (2014). Botany: An Introduction to Plant Biology (6th ed.). Jones & Bartlett
뤯		Learning. Proc. E. C., & Dayley, M. B. (Eds.) (2010). Plant Dayleamental Biology.
P		Pua, E. C., & Davey, M. R. (Eds.). (2010). Plant Developmental Biology – Biotechnological Perspectives: Volume 1. Springer Berlin Heidelberg
談問		Biotechnological Perspectives: Volume 1. Springer Berlin Heidelberg. Pua, E. C., & Davey, M. R. (Eds.). (2010). Plant Developmental Biology –
اك	43	Biotechnological Perspectives: Volume 2. Springer Berlin Heidelberg.
	26	Raghavan, V. (2000). Developmental Biology of Flowering Plants. Springer New York.
	26	Kagnavan, v. (2000). Developmental biology of flowering Plants. Springer New York.

29	
4	T
0	
025	
2	
Z	
ĕ	
Ģ	
6	
_	
Ö	
$\widehat{\Omega}$	
EMIC)	1
\leq	Ι,
Ö	l
\triangleleft	
Š	
5	۱.
α	١,
\lesssim	
TR	
S	
GIS	-
Ш	
N.	
\vdash	
_	
0	
100	am
2	am M
100	M
100	
100	M
rovedby DE	M M M
100	M M
PProvedby DE	M M M
Approvedby DE	M M M
024 Approvedby DE	M M M
24 Approvedby DE	M M M
024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
60/2024 Approvedby DE	M M M
/21060/2024 Approve aby DE	M M M
60/2024 Approvedby DE	M M M
ACAD C/ACAD C3/21060/2024 Approve aby DE	M M M
e ACAD C/ACAD C3/21060/2024 Approved by DE	M M M
ACAD C/ACAD C3/21060/2024 Approve aby DE	M M M

27	Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2005). Biology of Plants (7th ed.). W. H.
21	Freeman.
28	Simpson, M. G. (2010). Plant Systematics (2nd ed.). Elsevier Academic Press.
29	Smith, G. M. (1955). Botany: An Introduction to Plant Biology (4th ed.). McGraw-Hill.
30	Taiz, L., Møller, I. M., Murphy, A., & Zeiger, E. (2022). Plant Physiology and Development (7th ed.)

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination	70			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	10			
Reports/ presentations/ demonstrations by the students	10			

ample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):
Employability for the Course / Programme

27	Advanced cours	e in Cryptogamic Diversity	KU7DSCPLS402
DSC	Semester: 7	Hrs/week: 3 Theory + 1 practical	Credits: 4

- 1. Knowledge in Biology at 301-399 level
- Ability to write examination in English

Course Out	tcomes
CO1	
CO2	
CO3	
CO4	
CO5	

Mapping of Course Outcomes to PSOs/POs

RÁR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
∕2CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark		
5CO4								$\sqrt{}$	\checkmark	\checkmark	\checkmark	
CO5									\checkmark		\checkmark	$\sqrt{}$

Course Description

This course provides an integrated understanding of the diversity, reproduction, evolution, and applied aspects of algae, bryophytes, and pteridophytes.

- First module is dealing with taxonomy, phylogeny, and molecular trends in algae, exploring the evolutionary relationships among major algal groups.
- Next module focuses on bryophyte classification, diversity, reproductive biology, and ecological importance.
- Third module examines pteridophyte diversity, classification, and evolutionary trends.
- This course applied asponents of the course applied asponents of the course of the cou Last module emphasizes practical techniques for studying algae, bryophytes, and pteridophytes, including collection, preservation, culturing, spore studies, and molecular phylogeny with DNA barcoding.

This course will provide you opportunities to,

- 1. Understand the taxonomy, phylogeny, and molecular trends in algae, bryophytes, and pteridophytes.
- 2. Examine evolutionary theories and hypotheses regarding the origin of higher plants from algae.
- Study reproductive biology and life cycles of lower and vascular plants.
- 4. Gain practical skills in spore studies, culturing, and DNA-based phylogenetic analysis.

ssess ecological, economic, and biotechnological applications of algae, bryophytes, and pteridophytes.

in 1876 Credit		Teaching Hours		Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total

$\frac{100}{100}$	3	1	4	3+ 0+ 2 (45+ 0 + 30)	5	35 (25T+ 10P)	65 (50T + 15P)	100
-------------------	---	---	---	-------------------------	---	------------------	-------------------	-----

COURSE CONTENT

Module 1: Diversity, Reproduction, and Evolution of algae 10 hrs

- ₹1.1 Taxonomy, Phylogeny, and Molecular Trends: van den Hoek et al. (1995), Lee (2008). Modern trends. Fossil Algae
- 1.2. Salient features of Algal groups: Cyanophyta, Chlorophyta, Xanthophyta, Bacillariophyta, Phaeophyta, Rhodophyta, Euglenophyta, Dinophyta, Chrysophyta and Cryptophyta. Molecular phylogeny and evolutionary relationships among major algal groups.
- 1.3. Evolutionary Theories and hypotheses: revisions of Endosymbiotic theory primary and secondary. Origin of higher plant groups from algae- Charophycean hypothesis. Co evolutionary hypothesis. Stepwise terrestrialisation theory.
- 1.4. Applications, Ecology, and Algal Toxicology: Role in primary productivity, carbon sequestration, and nitrogen fixation. Biofouling, biofuel, bioluminescence, and toxicity syndromes (NSP, DSP, ASP, PSP, CFP and cyanobacterial toxins). Algae as live feed in ₹fisheries.

Module 2: Diversity, Reproduction, and Evolution of Bryophytes 10 hrs

- \$2.1. General Features and Classification: General features of Bryophytes. Comparison of Rothmaler (1951) and Goffinet et al. (2008).. Fossil bryophytes.
- 22.2. Diversity of Bryophytes: Salient features upto orders of Hepaticopsida (Jungermanniales, úMarchantiales, Pallaviciniales, Aytoniopsidales), Anthocerotopsida (Notothyladales, Anthocerotales),
- 52.3. Salient features upto orders of Bryopsida (Sphagnales, Polytrichales, Bryales, Funariales, Hypnales).
- 2.4. Comparison of bryophytes with other groups: similarities and dissimilarities with algae. Algal descent theory on bryophyte origin. Comparative account of bryophytes and pteridophytes.

Module 3: Module 3: Pteridophytes – Classification, Structure, and Evolution 10 hrs

- 3.1 Classification and Phylogeny: Comparison of classical systems and PPG 2016. DNA barcoding and molecular systematics. Phylogenetic trends within the groups
- 3.2. Characteristics of living pteridophytes: Lycopodiales, Isoetales, Calamitales, Ophioglossales, Osmundales, Gleicheniales, Salviniales.
- 3.3. Characteristics of Fossil records: Psilophytales, Lepidodendrales, Calamitales, Primofilicales.
- 3.4.General topics pteridophytes. **Evolutionary** Theory; on theories: Telome Polysporangiophyte Theory.

Module 4. Methods for Phycology, bryology and Pteridology. 6 hrs

- 4.1. Herbarium making of marine macroalgae and sporophytes of ferns. Dry preservation of bryophytes.
- 24.2. Protocols for microscopic study: Whole mount preparation of algal filaments, TTC test for bryophyte spores, FDA staining for viable fern spores, Neutral red for algal cyst germination.
- 4.3. Culturing: Algal culturing- variations in microalga and macroalga. in-vitro propagation of pteridophytes.
- 24.4. Molecular Phylogeny and DNA Barcoding for Algae, bryophytes, and pteridophytes. on with classical taxonomy and systematics.

5. TEACH SPACE 9 Hrs
dule is a list of suggested activities that helps to achieve the aim, objectives and of the course; which will be determined by the concerned teacher. Assessment for this module is strictly internal.

Theory 9 Hrs

Habitat Ecology various cryptogams and their significance. Nutritional variation in algae. Contributions of Indian botanists in cryptogam studies.

Practical 30 Hrs

(ACADEMIC) on 19-Dec-2025 04:56 PM - Pag

- 2. Collection, preservation and submission of macro algal herbaria/ bryophytes /ferns/ /whole mounts. (any 5)
- 3. Collection and study of the algae mentioned below and their identification up to generic level: Pediastrum, Scenedesmus, Hydrodictyon, Ulva, Pithophora, Bulbochaete, Cephaleuros, Draparnaldiopsis, Bryopsis, Codium, Caulerpa, Halimeda. Closterium, Nitella, Botrydium, Biddulphia, Coscinodiscus, Ectocarpus, Dictyota, Padina, Turbinaria. Batrachospermum, Gracilaria and Champia. (any 10 from the list)
- 4. Morphological and reproductive study of following bryophytes using cleared whole mount preparations. dissections and sections: Pallavicinia. Cyathodium. Lunularia, Targionia. Porella, Sphagnum, Bryum, Fissidens. (any 5 from the list)
- 5. Comparative study of vegetative and reproductive structures of the living pteridophyte genera mentioned below- Lycopodium, Gleichenia, Blechnum, Angiopteris, Salvinia, Ceratopteris, Asplenium, Acrostichum Azolla and Salvinia. (any 5 from the list)
- 6. Fossil Pteridophytes Rhynia, Lepidodendron, Calamites, Sphenophyllum. (any two from the list)

- Suggested Assignment Topics- Theory

 1. Beneficial harmful effects of cryp

 2. Weeds among cryptogams

 3. Diversity in plant body in algae, by

 4. Medicinal and religious uses of cryp 1. Beneficial harmful effects of cryptogams

 - 3. Diversity in plant body in algae, bryophytes and pteridophytes
 - 4. Medicinal and religious uses of cryptogams

4. Medicinal and religious uses of crypting suggested Assignment Topics- Practical 1. Field visits 2. Examination of Azolla to find out the suggestion of crypting and preservation of crypting suggestion.

- 2. Examination of Azolla to find out the algal association
- 3. Collection and preservation of cryptogams
- 4. Photo documentation of cryptogams

0		
. Ap	Sl. No	Title/Author/Publishers of the Book specific to the module
060/2024	1	Bhattacharya, D. (2005). Origin and evolution of algae: Endosymbiotic theory revisited. <i>Plant Biology</i> , 7, 219–227.
21060	2	Bhattacharya, D., & Medlin, L. (1998). Algal phylogeny and the origin of land plants. <i>Trends in Ecology & Evolution</i> , 13(11), 470–475.
D C3/	3	Bold, H. C., & Wynne, M. J. (1985). <i>Introduction to the Algae: Structure and Reproduction</i> . Prentice-Hall.
:/ACA	4	Bower, F. O. (1923). <i>The Ferns: Morphology, Systematics, and Distribution</i> . Cambridge University Press.
SAD C	5	Delwiche, C. F., & Cooper, E. D. (2015). The evolutionary origin of plants. <i>American Journal of Botany</i> , 102(12), 1925–1939.
File AC	6	Fritsch, F. E. (1935). <i>The Structure and Reproduction of Algae</i> (Vols. 1–2). Cambridge University Press.
er of F	7	Gensel, P. G., & Edwards, D. (2001). Plants on land: The origin and diversification of vascular plants. <i>Science</i> , 293, 1467–1470.
y Ord	8	Goffinet, B., & Shaw, A. J. (2009). <i>Bryophyte Biology</i> (2nd ed.). Cambridge University Press.
l rersity	9	Graham, L. E., Graham, J. M., & Wilcox, L. W. (2009). <i>Algae</i> (2nd ed.). Pearson Education.
1 X X X		Karol, K. G., McCourt, R. M., Cimino, M. T., & Delwiche, C. F. (2001). The closest living relatives of land plants. <i>Science</i> , 294(5550), 2351–2353.
		Kenrick, P., & Crane, P. R. (1997). The origin and early diversification of land plants. <i>Science</i> , <i>276</i> , 262–267.
	12	Kenrick, P., & Strullu-Derrien, C. (2014). The origin and early evolution of vascular plants.

		New Phytologist, 202(3), 736–751.						
141	13	Kumar, S., & Tandon, R. N. (2012). Practical Phycology and Bryology. Scientific						
		Publishers.						
Page	14	Lee, R. E. (2008). <i>Phycology</i> (4th ed.). Cambridge University Press.						
- 1	15	Page, C. N. (2002). The Evolution of Pteridophytes. Timber Press.						
PM	16	Parihar, N. S. (1972). Bryophytes: Structure, Reproduction, and Classification. Central						
56	10	Book Depot.						
04:56	17	Proctor, M. C. F., & Tuba, Z. (2002). Desiccation-tolerant Bryophytes: Eco-physiology						
		and Survival. Springer.						
-20	18	Rashid, A. (1998). An Introduction to Pteridophytes. Vikas Publishing House.						
19-Dec-2025	19	Raven, J. A., & Allen, J. F. (2003). Genomics and algal evolution: Insights into the origin						
9-D	15	of plants. Plant Biology, 5(3), 111–121.						
		Renzaglia, K. S., Duff, R. J., Nickrent, D. L., & Garbary, D. J. (2000). Vegetative and						
) on	20	reproductive innovations of early land plants. <i>International Journal of Plant Sciences</i> ,						
¶C		161(S6), S349–S372.						
ADEMIC)	21	Rindi, F., & Guiry, M. D. (2004). Molecular approaches to algal taxonomy and phylogeny.						
AD—		Journal of Phycology, 40(3), 621–635.						
(AC	22	Smith, G. M. (1955). Cryptogamic Botany. McGraw-Hill.						
R	23	Sporne, K. R. (1962). The Morphology of Pteridophytes. Hutchinson & Co.						
RA	24	Stewart, W. N., & Rothwell, G. W. (1993). Paleobotany and the Evolution of Plants.						
REGISTR	- '	Cambridge University Press.						
ЕG	25	Van den Hoek, C., Mann, D. G., & Jahns, H. M. (1995). Algae: An Introduction to						
		Phycology. Cambridge University Press.						
\exists	26	Andersen, R.A. (2005). Algal Culturing Techniques. Elsevier Academic Press.						
Ë	27	Stosch, H.A. von (1965). "Observation on resting spore formation in diatoms and						
DE		dinoflagellates." <i>Phycologia</i> , 5, 21–44.						
þ	28	Sournia, A. (1978). <i>Phytoplankton Manual</i> . UNESCO, Paris.						
/ed	29	Chopra, R.N., & Kumra, P.K. (1988). <i>Biology of Bryophytes</i> . New Age International.						
0	30	Rashid, A. (1998). An Introduction to Pteridophyta. Vikas Publishing.						
Approved by DEPUTY	31	Krishnamurthy, K.V. (1988). Methods in Plant Histochemistry. Viswanathan Pvt. Ltd.						
24 /	32	Mishler, B.D. (2001). <i>Bryophyte Biology</i> . Cambridge University Press.						
2024								

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

TEACHING LEARNING STRATEG	IES MODE OF TRANSACTION			
Hands-on experiments	> Lecturing			
Collaborative learning-Group	► ICT			
discussion	Practical sessions with			
	demonstrations and hands on			
	experiences			
ASSESSMENT RUBRICS		Marks		
End Semester Evaluation ESE		65		
 University Examination 		50		
Practical Examination				
Continuous Comprehensive Assessi	nent CCA	35		
• Examinations (multiple choice and critical thinking questions	ce, true-false, fill-in-the-blank, matching, short answer s)	15		
Writing assignment		5		
Reports/ presentations/ demon	nstrations by the students	5		

- Parameter of File ACAD C/ACAD C3/21060/2024 Approved by DEPUTY REGISTRAR (ACADEMIC) on 19-Dec-2025 04:50 and 1
- 2 Marks Question (Understanding)
- Marks Questions (Applying and Analyzing):
 Marks Questions (Evaluating and Creating):
 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

Fraduates can pursue careers in plant research, environmental consultancy, biotechnology, forestry, ecological

28	Advanced cours	e in Diversity of Phanerogams	KU7DSCPLS403
DSC	Semester: 7	Hrs/week: 3 Theory + 1 practical	Credits: 4

- 1. Knowledge in Biology at 301-399 level
- 2. Ability to write examination in English

Course Outcomes									
CO1	Identify and describe major gymnosperm and angiosperm groups.								
CO2	Explain the evolutionary origin and diversification of flowering plants								
CO3	Apply taxonomic methods for plant collection, preservation, and classification.								
CO4	Interpret phylogenetic data and construct basic evolutionary trees.								
CO5	Communicate scientific descriptions and use diagnostic keys effectively for plant identification.								

Mapping of Course Outcomes to PSOs/POs

1181	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			V	V	V	V						
Есоз							\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark		
CO4								\checkmark	$\sqrt{}$	\checkmark	\checkmark	
⊵CO5										\checkmark	$\sqrt{}$	$\sqrt{}$

Course Description

This advance course provides an integrated understanding of the diversity, evolution, and classification of phanerogams.

- First module introduces the diversity, morphology, and evolutionary relationships of gymnosperms, from extinct seed ferns to living conifers and cycads.
- Second module focuses on the origin and diversification of flowering plants, tracing the morphological evolution of reproductive organs and major evolutionary theories.
- Third module provides a foundation in classical and modern plant taxonomy.
- Last module trains students in technical description and identification of angiosperm families

This course will provide you opportunities to explore major evolutionary transitions, coevolutionary interactions, and modern taxonomic methods that connect classical botany with molecular systematics.

- 1. To understand the diversity, structure, and evolutionary relationships of gymnosperms and angiosperms.
- To study the morphological and phylogenetic evolution of flowering plants.
- To develop proficiency in plant identification, herbarium preparation, and classification.
 - apply modern taxonomic principles, including ICN and molecular tools.
 - recognize coevolutionary processes shaping plant–pollinator interactions.

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
ge 144	1	4	3+0+2 (45+0+30)	5	35 (25T+ 10P)	65 (50T + 15P)	100

COURSE CONTENT

Module 1: Gymnosperms – Diversity, Morphology, and Phylogeny (12 hrs)

- 21.1. General Characters and Evolutionary Trends: Comparison with other plant groups. Phylogenomics and modern classification (Christenhusz et al., 2011).
- \$1.2. Diversity of Gymnosperm Orders: Salient features of Pteridospermales, Pentoxylales, Bennettitales, Cycadales, Coniferales, Ginkgoales, Taxales, Gnetales. Interrelatiship among žgroups.
- 21.3. Evolutionary trends and Phylogenetic Relationships: Evolutionary trends and Sinterrelationships among orders
- 31.4. Indian Gymnosperm studies and Economic importance: Distribution of living and fossil gymnosperms in India. Contributions of Birbal Sahni, Bharadwaj, R.C. Srivastava.

Module 2: Evolution of Angiosperm Morphology (6 hrs)

- 2.1. Morphological evolution of Angiosperms: Fossil angiosperms and primitive angiosperms. Origin of flowers, stamens, carpels, and nectaries.
- 2.2. Major theories on angiosperm evolution: The Gnetales-Angiosperm Theory; Euanthial Theory, Pseudanthial theory, The mostly male theory
- 22. 3. Coevolution with pollinators: Pairwise, Diffuse and Guild coevolutios.
- 2.4. Major coevolution theories: Pollinator Shift hypothesis, Mutualistic Coevolution theory, Mosaic coevolution theory; Pollination syndrome concept

Module 3: Plant Taxonomy – Methods, Nomenclature, and Character Analysis (6 hrs)

- 3.1. Methods of Plant Exploration and Identification: Field exploration, plant collection, herbarium techniques. Identification keys: indented and bracketed. Importance of flora in ataxonomy.
- 23.2. Botanical Nomenclature and ICN. History and development. Effective and valid publication, typification, conserved names, hybrid and cultivated plant nomenclature.
- 3.3. Sources of Taxonomic Characters: Morphology, anatomy, embryology, palynology, cytology, phytochemistry. Primitive and advanced characters, their taxonomic significance.
- 3.4. Modern Trends in Taxonomy. Cladogram and Adansonian principles Phylogenetic systematics, tree-building methods (Maximum Likelihood, Bayesian), DNA barcoding

Module 4. Morphological Description of Angiosperms

Describing plant family in technical terms based on habit, habitat, root, stem, leaf, inflorescence, bract, flower, fruit and seed

- Ranunculaceae, Magnoliaceae, Menispermaceae, Polygalaceae, Caryophyllaceae, Capparidaceae, Sterculiaceae, Geraniaceae
- ₹4.2. Sapindaceae, Rhizophoraceae, Passifloraceae, Melastomataceae, Aizoaceae, Gentianaceae.
- Ē4.3. Boraginaceae, Convolvulaceae, Oleaceae, Lentibulariaceae, Bignoniaceae, Scrophulariaceae, Pedaliaceae
- 4.4. Lauraceae, Loranthaceae, Amaryllidaceae, Commelinaceae, Araceae, Cyperaceae

Module 5. TEACH SPACE 9 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and Coutcome of the course; which will be determined by the concerned teacher. Assessment for this

s strictly internal.

9Hrs

molecular views on flower: Regulatory genes for pigmentation (anthocyanin pathway genes), rlower size and shape (TCP, CYC, RAD genes) and floral scent (terpenoid synthase genes). Importance of CYCLOIDEA gene in floral symmetry.

Practical 30 Hrs

- Herbarium preparation of 20 specimens
- Taxonomic study of any 20 families given in the syllabus.

- 1. Molecular basis of flower development
- 2. Floral variations within a general even in a species
- 3. Reasons for discrepancies between several classifications

- 1. Photo documentation of campus flora
- 2. Preparation of bracketed and intended key by taking any 5 plants
- 3. Practising the describing of plants in technical terms

Practical	Practical 30 Hrs						
၈ 1. H	1. Herbarium preparation of 20 specimens 2. Taxonomic study of any 20 families given in the syllabus. 3. Digital herbarium preparation. 4. Taxonomic key preparation 5. Plant identification using a flora 6. Field visits 7. Visiting Herbaria gested Assignment Topics- Theory 1. Molecular basis of flower development 2. Floral variations within a genera/ even in a species 3. Reasons for discrepancies between several classifications gested Assignment Topics- Practical						
₹ 2. Ta	Taxonomic study of any 20 families given in the syllabus.						
9 3 D	igital herbarium preparation						
6 J. D.	Toyonomic key propagation						
- 4. 13	axonomic key preparation						
5. PI	ant identification using a flora						
ဗ္ဂ 6. Fi	eld visits						
<u>¥</u> 7. V	isiting Herbaria						
Suggested	Assignment Topics- Theory						
	lecular basis of flower development						
& 2. Flo	ral variations within a genera/ even in a species						
Ÿ 3 Re	asons for discrepancies between several classifications						
Suggested	Assignment Tonics- Practical						
0 1 Dh	oto documentation of campus flora						
() 2 D	on the second of campus flora						
$\stackrel{\circ}{\equiv}$ 2. Pre	paration of bracketed and intended key by taking any 5 plants						
<u> </u> 3. Pra	ctising the describing of plants in technical terms						
<u> </u>	,						
ĕ Sl. No	ral variations within a general even in a species sons for discrepancies between several classifications Assignment Topics-Practical to documentation of campus flora paration of bracketed and intended key by taking any 5 plants ctising the describing of plants in technical terms Title/Author/Publishers of the Book specific to the module Agnihotri, P., & Khuraijam, J. S. (Eds.). (2019). Angiosperm Systematics: Recent Trends and Emerging Issues (Felicitation Volume in Honour of Dr. Tariq Husain). IBP Books. APG IV. (2016). An update of the Angiosperm Phylogeny Group classification. Botanical Journal of the Linnean Society, 181(1), 1–20. Baruah, A. (2011). Handbook of Angiosperm Taxonomy and Useful Plants. Aavishkar Publishers. Beek, C. B. (2010). An Introduction to Plant Structure and Development: Plant Anatomy for the Twenty-First Century (2nd ed.). Cambridge University Press. Bierhorst, D. W. (1971). Morphology of Vascular Plants (Lower Groups). Macmillan. Bold, H. C., Alexopoulos, C. J., & Delevoryas, T. (1987). Morphology of Plants and Fungi. Harper & Row. Choudhary, S. S. (1997). A Concise Textbook of Botany (Cryptogams & Gymnosperms). New Delhi: CBS Publishers & Distributors. Christenhusz, M. J. M., Fay, M. F., & Chase, M. W. (2017). Plants of the World: An Illustrated Encyclopedia of Vascular Plants. Kew Publishing. Christenhusz, M. J. M., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., & Chase, M. W. (2011). A new classification and linear sequence of extant gymnosperms. Phytotaxa, 19, 55–70. Crepet, W. L., & Niklas, K. J. (2009). Darwin's second "abominable mystery": Why are there so many angiosperm species? American Journal of Botany, 96(1), 366–381. Eames, A. J. (1961). Morphology of the Angiosperms. McGraw-Hill. Eames, P. K. (2010). The evolution of floral biology. Annals of Botany. 104(8).						
X.	Agnihotri, P., & Khuraijam, J. S. (Eds.). (2019). Angiosperm Systematics: Recent						
2 1	Trends and Emerging Issues (Felicitation Volume in Honour of Dr. Tariq Husain).						
IS 1	IRP Rooks						
<u></u>	APG IV (2016) An undete of the Angiognam Phylogeny Group elegification						
₩ 2	APG IV. (2016). An update of the Angiosperm Phylogeny Group classification.						
<u> </u>	Botanical Journal of the Linnean Society, 181(1), 1–20.						
$\frac{1}{2}$ 3	Baruah, A. (2011). Handbook of Angiosperm Taxonomy and Useful Plants.						
ii 3	Aavishkar Publishers.						
<u> </u>	Beck, C. B. (2010). An Introduction to Plant Structure and Development: Plant						
<u>q</u> 4	Anatomy for the Twenty-First Century (2nd ed.). Cambridge University Press.						
×e	Bierhorst, D. W. (1971). Morphology of Vascular Plants (Lower Groups).						
일 5	Macmillan						
Ap	Bold, H. C., Alexopoulos, C. J., & Delevoryas, T. (1987). <i>Morphology of Plants</i>						
7 6	Bold, II. C., Alexopoulos, C. J., & Delevolyas, I. (1987). Worphology of I lumis						
20.	ana rungi. narper & Row.						
/09	Choudhary, S. S. (1997). A Concise Textbook of Botany (Cryptogams &						
9 7	Gymnosperms). New Delhi: CBS Publishers & Distributors.						
3/2							
O	Christenhusz, M. J. M., Fay, M. F., & Chase, M. W. (2017). <i>Plants of the World:</i>						
AF.	An Illustrated Encyclopedia of Vascular Plants. Kew Publishing.						
AC	Christenhusz, M. J. M., Reveal, J. L., Farjon, A., Gardner, M. F., Mill, R. R., &						
\circ 9	Chase, M. W. (2011). A new classification and linear sequence of extant						
Q	gymnosperms. <i>Phytotaxa</i> , 19, 55–70.						
9	Grant W. I. & Nillas V. I. (2000) Degrain's second "about able masters".						
0 10	Crepet, W. L., & Niklas, K. J. (2009). Darwin's second "abominable mystery":						
〒 10	Why are there so many angiosperm species? American Journal of Botany, 96(1),						
<u>,</u>	366–381.						
ا ا ا	Cronquist, A. (1988). The Evolution and Classification of Flowering Plants (2nd						
ŏ II	ed.). New York Botanical Garden.						
.≧ 12	Eames, A. J. (1961). Morphology of the Angiosperms. McGraw-Hill.						
<u>S</u>	Endress, P. K. (1994). Diversity and Evolutionary Biology of Tropical Flowers.						
▽ 1 へ 回動が急をが回	Combridge University Press						
	Cambridge University Press.						
	, ()						
	1353–1372.						
15	Fenster, C. B., Armbruster, W. S., Wilson, P., Dudash, M. R., & Thomson, J. D.						
13	(2004). Pollination syndromes and floral specialization. <i>Annual Review of Ecology</i> ,						

		Evolution, and Systematics, 35, 375–403.
16	1.0	Friis, E. M., Crane, P. R., & Pedersen, K. R. (2011). Early Flowers and
4	16	Angiosperm Evolution. Cambridge University Press.
- Page 146	1.7	Friis, E. M., Crane, P. R., & Pedersen, K. R. (2011). Early Flowers and
		Angiosperm Evolution. Cambridge University Press.
₽	10	Gupta, R. P. (2012). Textbook of Systematic Botany (7th ed.). CBS Publishers &
26	18	Distributors.
.40	19	Herrera, C. M., & Pellmyr, O. (Eds.). (2002). Plant-Animal Interactions: An
25	19	Evolutionary Approach. Blackwell.
-20	20	Heywood, V. H., Brummitt, R. K., Culham, A., & Seberg, O. (2007). Flowering
)ec	20	Plant Families of the World. Royal Botanic Gardens, Kew.
1-6:	21	Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J.
, uc	21	(2016). Plant Systematics: A Phylogenetic Approach (4th ed.). Sinauer Associates.
$\tilde{\mathcal{O}}$	22	Kaur, I., & Uniyal, P. L. (2019). Textbook of Gymnosperms: Based on CBCS
≥		Syllabus of University of Delhi. New Delhi: [Publisher].
YDE		Khanna, K. K., Singh, N. P., & Mudgal, V. (201X). Flora of Madhya Pradesh:
AC/	23	Angiosperms (Hydrocharitaceae to Poaceae) and Gymnosperms (Vol. III).
REGISTRAR (ACADEMIC) on 19-Deg-2025 04:56 PM		Botanical Survey of India.
ŔA	24	Pellmyr, O. (2003). Yuccas, yucca moths, and coevolution: A review. <i>Annals of the Missouri Potanical Candon</i> , 00(1), 35, 55
ST		Missouri Botanical Garden, 90(1), 35–55. Pullaiah, T., & Karuppusamy, S. (2018). Taxonomy of Angiosperms (4th rev. ed.).
EG	25	New Delhi: [Publisher].
		Pusalkar, P. K., & Srivastava, S. K. (2018). Flora of Uttarakhand: Vol. 1 –
É	26	Gymnosperms and Angiosperms (Ranunculaceae–Moringaceae). IBP Books.
П		Raven, P. H., Evert, R. F., & Eichhorn, S. E. (2020). <i>Biology of Plants</i> (9th ed.).
Approved by DEPUTY	27	W. H. Freeman and Co.
d d		Sahni, B. (1948). The Pentoxyleae: A New Group of Gymnosperms from the
000	28	Jurassic of India. Bot. Gazette.
Idd	29	Sambamurty, A. V. S. S. (2019). A Textbook of Bryophytes, Pteridophytes,
		Gymnosperms and Paleobotany. Dreamtech Press.
2024	30	Simpson, M. G. (2019). Plant Systematics (3rd ed.). Academic Press.
/09	31	Sokal, R. R., & Sneath, P. H. A. (1963). Principles of Numerical Taxonomy. W. H.
210	31	Freeman.
23/	32	Soltis, D. E., Soltis, P. S., & Chase, M. W. (2019). Phylogeny and Evolution of
0	32	Angiosperms. University of Chicago Press.
Ç	33	Srivastava, R. C. (1992). Fossil Gymnosperms of India. Today & Tomorrow's
C	j	Printers.
AD	34	Stuessy, T. F. (2009). Plant Taxonomy: The Systematic Evaluation of Comparative
AC		Data (2nd ed.). Columbia University Press.
<u>-i</u>	35	Stuessy, T. F., & Lack, H. W. (2011). Monographic Plant Systematics:
of F		Fundamental Assessment of Plant Biodiversity. Regnum Vegetabile.
Jer	36	Takhtajan, A. (1991). <i>Evolutionary Trends in Flowering Plants</i> . Columbia University Press.
rersity Order of File ACAD C/ACAD C3/21060	37	Takhtajan, A. (2009). Flowering Plants. Springer.
Sit<	37	Taylor, T. N., Taylor, E. L., & Krings, M. (2009). Paleobotany: The Biology and
/ers	38	Evolution of Fossil Plants. Academic Press.
<u></u>		Willis, K. J., & McElwain, J. C. (2014). <i>The Evolution of Plants</i> (2nd ed.). Oxford
		University Press.
		Yadav, S. (2022). <i>Plant Systematics & Angiosperm Taxonomy</i> . Mahaveer
ك	10	Publications.
	<u> </u>	

,	TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
	➤ Hands-on experiments	Lecturing
	Collaborative learning-Group	> ICT
	discussion	Practical sessions with
	Visit to herbaria	demonstrations and hands on
	Field visits	experiences

TEA	ACHING LEARNING STRATEGIES		MODE OF TRANSACTION	
\triangleright	Hands-on experiments	>	Lecturing	
\triangleright	Collaborative learning-Group	>	ICT	
	discussion	>	Practical sessions with	
\triangleright	Visit to herbaria		demonstrations and hands on	
>	Field visits		experiences	
ASS	ESSMENT RUBRICS			Mark
End	Semester Evaluation ESE			65
•	University Examination			50
Practical Examination				
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)				
	Writing assignment			5
Reports/ presentations/ demonstrations by the students				
	Internal practical examination	•		10

Marks Questions (Evaluating and Creating):

₹4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course equips students with the foundational and advanced knowledge required for careers in plant taxonomy, piodiversity conservation, forestry, herbarium curation, ecological research, environmental consultancy, and plant Biotechnology.

29		cology, Microbiology and athology	KU7DSCPLS404
DSC	Semester: 7	Hrs/week: 4 Theory	Credits: 4

- 1. Knowledge in Biology at 301-399 level
- 2. Ability to write examination in English

Course C	Course Outcomes						
CO1	Identify and classify bacteria, fungi, and viruses using classical and molecular methods.						
CO2	Analyze microbial growth, metabolism, and adaptations to different environments.						
CO3	Apply knowledge of plant-microbe interactions in agriculture and environmental biotechnology.						
CO4	Demonstrate understanding of fungal ecology and use fungi in industrial and medicinal applications.						
CO5	Implement strategies for plant disease diagnosis, management, and prevention using modern tools						

Mapping of Course Outcomes to PSOs/Pos

GIS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	V									
CO2			V	V	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
<u>C</u> CO4								\checkmark	~	~	~	
CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This course provides an integrated understanding of microorganisms, fungi, and plant pathogens.

- First module explores the structural, physiological, and metabolic diversity of microorganisms.
- Next module introduces the biology of viruses and microbial ecological roles, highlighting plant-microbe interactions, nitrogen fixation, and the use of molecular tools for ecological and evolutionary studies.
- Third module focuses on fungal taxonomy, morphology, and physiology, with special emphasis on their ecological functions, industrial uses, and medical importance, including recent advances in fungal biotechnology.
- Last module examines plant-pathogen interactions, mechanisms of host defense, and modern disease management approaches integrating biological, chemical, and technological methods for sustainable agriculture.

This course will help to focus on microbial diversity, taxonomy, physiology, ecological roles, and applications in biotechnology and agriculture.

- 1. Understand the diversity, structure, and physiology of microorganisms.
- Learn classification, identification, and molecular tools for microbes and fungi.

plore virus biology, microbial ecology, and plant-microbe interactions.

udy fungal morphology, taxonomy, and their industrial, agricultural, and medical applications.

in knowledge of plant diseases, host-pathogen interactions, and modern disease management strategies.

Credit **Teaching Hours** Assessment

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
ge 14g	0	4	4+0+0 (60+0+0)	4	30	70	100

Module 1: Microbiology 12 hrs

- 1.1 **Microbial Cell Structure and Physiology:** Bacterial cell wall, capsule, slime layers, flagella, pili/fimbriae. Morphology of specialized bacteria: spirochetes, rickettsias, chlamydias, mycoplasmas, actinomycetes, archaeobacteria (extremophiles). Growth kinetics, generation time, growth curve, aerobic/anaerobic culture systems. Microbial metabolism and adaptation to environmental extremes
- 21.2. **Microbial Taxonomy and Phylogeny:** Bergey's Manual-based classification of bacteria. Molecular and biochemical identification methods. Molecular and genomic tools: DNA/RNA phomology, G+C content, rRNA sequencing, DNA barcoding. chemotaxonomy (cell wall, lipid, quinone analysis). Serological and ecological approaches to microbial classification.
- 1.3. **Methods in Microbiology:**Culture techniques: media preparation, sterilization, isolation of pure cultures, anaerobic cultivation. Maintenance of microbial cultures and estimation of microbial biomass.
- 1.4. **Applied Microbiology and Industrial Microbiology:** Fermentation technology: upstream and downstream processing, fermenter design. Industrial, Environmental and pagricultural applications. Bioremediation- microbial pollution control. Microbial biotechnology.

Module 2: Virology, Microbial Ecology, and Plant-Microbe Interactions (9 hrs)

- 2.1. **Virology and Acellular Entities:** Plant, animal viruses, bacteriophages, viroids, prions. Virus structure, genome types (DNA/RNA), envelopes, viral replication, and life cycles. Virus cultivation and assay: embryonated eggs, experimental animals, cell cultures (monogand suspension cultures). Viral applications in cancer biology and biotechnology.
- 2.2. Microbial Ecology: Microbial roles in biogeochemical cycles and nutrient turnover. Microbes in terrestrial, freshwater, and marine environments. Extremophiles and their adaptations. Microbial associations with plants: symbiosis, mutualism, commensalism, parasitism
- 2. 3. **Applied Plant-Microbe Interactions:** Nitrogen-fixing bacteria: Rhizobium, Azotobacter, Anabaena, Nostoc, Frankia. Biocontrol agents and plant growth-promoting microbes. Microbes in agriculture and environmental restoration. Use of molecular tools (DNA barcoding, metagenomics) for microbial ecology studies
- 2.4. **Modern Tools and Techniques in Microbial Studies:** High-throughput sequencing, SPCR, qPCR, CRISPR-based tools. Biosensors, bioinformatics for microbial phylogeny and functional prediction. Imaging: confocal microscopy, fluorescence tagging, flow cytometry. Environmental monitoring: microbial indicators, metagenomics, eDNA analysis.

Module 3: Mycology and Applications 9 hrs

- 3.1. Fungal Classification and Morphology: Phylum-level classification: Chytridiomycota, Zygomycota, Glomeromycota, Ascomycota, Basidiomycota, Deuteromycetes: Salient fatures of these groups and their life cycle. General topics on fungi: Comparative fungal cell walls and fruiting bodies. Parasexuality in Fungi. Types of fungal spores.
- 3.2. Food and fermentation industries: yeast, edible fungi, enzyme production. Fungi in Agriculture: plant pathogens, mycorrhizal inoculants, biocontrol agents.
- lical mycology: Major fungal diseases in human beings. fungal pathogens, antifungal sistance mechanisms. Mycotoxins. Fermentation and bioreactor design for fungi.
- 5.4. Iviodern Tools and Techniques in Mycology: Microscopy: SEM, TEM, fluorescence, confocal imaging. Molecular identification: DNA barcoding, ITS sequencing, metagenomics.

Bioinformatics and computational tools for fungal taxonomy and metabolite analysis

Module 4. Plant Pathology and Biotechnology

- 4.1. Plant Disease and Host-Parasite Interaction: Major plant pathogens. Disease development. Host defense mechanisms: structural, biochemical, phytoalexins, secondary messengers. Genefor-gene and protein-for-protein interaction concepts.
- 4.2.. Plant Disease Management: Biological control: antagonists, mode of action, crossprotection. Cultural practices: crop sanitation, disease-free propagules, vector control. Chemical control: fungicides, systemic and post-harvest treatments. Integrated Pest and Disease Management (IPDM)
- 4.3. Major Plant Diseases in India: Cereals: rice blast, bacterial blight: Vegetables: tomato bacterial wilt, chili seedling wilt: Fruits: Anthracnose of Mango. papaya mosaic: Other crops: coconut grey leaf spot, tea blister blight, rubber powdery mildew.
- 4.4. Modern Tools and Techniques in Plant Pathology: Remote sensing, GIS, and UAV-based monitoring for disease mapping. Genetic engineering and transgenic approaches for disease resistance.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

2Staining of microbes various methods. Gram staining for bacteria. Protocols of streak plate method. Fungal Culture in PDA medium. Structure of TMV, Structure of Lambda phage.

^EPractical 10 Hrs

- 1. Gram Staining of bacteria
- 2. Streak plate method
- **3.** PDA fungal culture
- 4. Endospore staining
- 5. Examination of root nodules
- **6.** Fungal spore staining
- 7. Control measure for the diseases mentioned in the syllabus
- **8.** Field visit to pathology labs
- **9.** Collection, preservation and submission of fungi. 2.
- 10. Fungal genus-morphological anatomical study. Collection and study of the types mentioned below and their identification up to generic level: Synchytrium, Pilobolus, Mucor, Claviceps, Xylaria, Geoaster Auricularia, Cyathus, Ustilago.(Any 6 genera)
- 11. Microscopic photographs/Photographs of fungi from various fields, taken by the student, can be printed and submitted in the record as separate sheets

C/ACAD C3/21060/2024 Approved by DEPUT

- 4. Plant pathological specimen collection protocol for herbaria making

Suggested Assignment Topics- Theory 1. Salient features of fungal groups 2. Comparison of spores in fungi 3. Reproduction in viruses 4. Plant pathological specimen collections Suggested Assignment Topics- Practical

- 1. Other staining methods
- n-thological survey se of microbes to enhance plant growth ushroom cultivation

	1	Agrios, G. N. (2005). Plant Pathology (5th ed.). Elsevier Academic Press.
151	2	Alexopoulos, C. J., Mims, C. W., & Blackwell, M. (1996). Introductory Mycology
de 1		(4th ed.). Wiley.
. Page	3	Ananthanarayan, R., & Paniker, C. K. J. (2013). Textbook of Microbiology (10th
<u>N</u>		ed.). Universities Press. Aneja, K. R. (2019). Experiments in Microbiology, Plant Pathology, Tissue Culture
04:56 PM	4	and Mushroom Production (5th ed.). New Age International.
		Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants –
2025	5	With special reference to induced systemic resistance (ISR). Microbiological
19-Dec-2025		Research, 164(5), 493–513.
] 3-D	6	Christenhusz, M. J. M., Fay, M. F., & Chase, M. W. (2011). Plants of the World: An
on 1		Illustrated Encyclopedia of Vascular Plants. Kew Publishing. Dubey, R. C., & Maheshwari, D. K. (2018). A Textbook of Microbiology (3rd ed.). S.
1IC)	7	Chand Publishing.
ADEMIC	0	Kaur, S., & Singh, H. (2014). Microbial biocontrol agents: Mechanisms and
CAL	8	applications in agriculture. Journal of Plant Pathology & Microbiology, 5(10), 1–8.
R (A	9	Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2021).
rrai		Brock Biology of Microorganisms (16th ed.). Pearson. Mehrotra, R. S., & Aggarwal, R. (2019). Plant Pathology (4th ed.). Tata McGraw-
SIS	10	Hill.
RE(11	Pelczar, M. J., Chan, E. C. S., & Krieg, N. R. (2015). Microbiology (5th ed.). Tata
ЛΥ	11	McGraw-Hill.
EPL	12	Prescott, L. M., Harley, J. P., & Klein, D. A. (2021). Microbiology (11th ed.). McGraw-
Dy D	13	Hill Education. Rangaswami, G., & Ganesan, K. (2010). Plant Diseases of Importance to India (2nd
/ed		ed.). ICAR Publication.
pproved	. 44	Rangaswami, G., & Mahadevan, A. (2009). Diseases of Crop Plants in India (5th
1 Ap	14	ed.). Prentice Hall of India.
202	15	Singh, R. S., & Singh, R. S. (2017). Fundamentals of Microbiology (3rd ed.). Kalyani
;/090		Publishers. Singh, S., & Singh, N. (2012). Post-harvest diseases of mango in India and
/210	16	management strategies. Journal of Horticultural Science, 7(2), 45–53.
rersity Order of File ACAD C/ACAD C3/21060	47	Sinha, R., & Sharma, R. (2017). Nitrogen-fixing bacteria in agriculture: A review.
CAE	17	Indian Journal of Microbiology, 57(2), 145–157.
C/A	18	Sivasithamparam, K., & Gopalaswamy, R. (2001). Microbial Ecology and Plant
AD		Growth. New India Publishing.
AC	19	Srivastava, A., & Kumar, P. (2018). Fungal endophytes of medicinal plants: Diversity and applications. Journal of Applied Microbiology, 125(4), 1019–1033.
File		Tortora, G. J., Funke, B. R., & Case, C. L. (2020). Microbiology: An Introduction
er of	20	(13th ed.). Pearson.
Orde	21	Tripathi, P., & Singh, R. (2016). Molecular tools for fungal taxonomy and
sity (identification: An overview. Fungal Biology Reviews, 30(3), 145–155.
/er	22	Verma, R., & Dubey, R. C. (2015). Microbial bioremediation of industrial
		pollutants: Indian perspective. Bioresource Technology, 198, 108–119. Webster, J., & Weber, R. (2007). Introduction to Fungi (3rd ed.). Cambridge
無器		University Press.
	(1) 医	

MODE OF TRANSACTION
Lecturing
> ICT
Practical sessions with
demonstrations and hands on
experiences

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination	70				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)					
Writing assignment	5				
Reports/ presentations/ demonstrations by the students	5				
Internal practical examination	10				

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

34 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

PEmployability for the Course / Programme
This course equips students with practical and theoretical expertise for careers in microb biotechnology, environmental monitoring, and agricultural disease management sectors. This course equips students with practical and theoretical expertise for careers in microbiology, mycology, plant pathology,

(ACADEMIC) on 19-Dec-2025 04:56 PM

30	Modern tools and Technic	Modern tools and Techniques for Ecological Studies			
DSC	Semester: 7	Hrs/week: 4 Theory	Credits: 4		

- 1. Knowledge in Biology at 301-399 level
- 2. Ability to write examination in English

Course Ou	tcomes
CO1	Explain advanced ecological principles governing populations, communities, and ecosystems.
CO2	Analyze causes and effects of environmental pollution and propose sustainable management strategies.
CO3	Evaluate biodiversity conservation techniques and restoration ecology practices.
CO4	Apply modern analytical, molecular, and geospatial tools for environmental monitoring.
CO5	Interpret ecological data to address real-world environmental and sustainability challenges.

Mapping of Course Outcomes to PSOs/Pos

ÆGI	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
5CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
соз							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	
CO5									$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$

Course Description

This course integrates ecological theory, environmental management, and modern analytical tools to equip students with the knowledge and skills necessary for sustainable environmental stewardship and scientific research.

- First module is introducing fundamental and advanced ecological concepts, emphasizing population and community interactions, succession, and ecosystem dynamics.
- Second module explores the ecological impacts of pollution and presents scientific, economic, and policy-based approaches to sustainable environmental management.
- Third module examines biodiversity patterns, conservation strategies, restoration ecology, and modern monitoring tools used in ecosystem assessment..
- Final module focuses on the chemical basis of environmental processes and introduces analytical, remote sensing, and GIS-based techniques for environmental monitoring.

This course will provide you advanced theoretical knowledge on tools and techniques relevant in ecology and environmental science.

Course Objectives:

- 1. To provide in-depth knowledge of population and community ecology, including ecological and genetic aptations.
 - study environmental pollution, its ecological impacts, and the principles of sustainable environmental imagement.
 - and modern techniques.

- 4. To introduce students to environmental chemistry, pollution analysis, and remote sensing technologies.
- 5. To develop practical skills in ecological data analysis, modelling, and environmental decision-making.

Page	Credit		Teaching H	lours	Assessment			
≥L/T	P/I Total L/T/P		L/T/P	Total	CCA	ESE	Total	
4:56	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100	

Module 1: Advanced Concepts in Ecology and Population Dynamics 12 hrs

- 1.1. Population Ecology (Autecology). Characteristics: size, density, dispersion, age structure, enatality, mortality. Population growth models, environmental resistance, biotic potential, carrying capacity. Positive and negative interactions, migration, subsistence density. Ecological consequences of overpopulation
- 1.2. Genecology and Ecotypes: Ecological amplitude, ecads, ecotypes, ecospecies, coenospecies. Adaptation and evolution in heterogeneous environments. Population genetics in atural habitats
- 1.3. Community Ecology (Synecology): Community formation processes. Community classification: dynamic systems (Clements), criteria, and synthetic characteristics. Sorensen's similarity index, coefficient of communities. Dynamic community characteristics: cyclic and non-cyclic replacement
- 1.4. Succession and Ecosystem Dynamics: Concepts of primary and secondary succession, autotrophic and heterotrophic changes. Retrogressive succession, climax communities, community resilience. Energy flow, nutrient cycling, and ecosystem stability

Module 2: Pollution Ecology and Environmental Management

- 12 hrs
- 2.1. Pollution Ecology: Types, Causes and Effects of air, water, and soil pollution on ecosystems, biodiversity, and human health. Biogeochemical and photochemical reactions in the atmosphere. Particulates, aerosols, turbidity, and climate impacts
- 2.2.. Waste Management: Solid, biomedical, and hazardous waste: sources, characterization, and disposal. Treatment methods: composting, incineration, bioaugmentation, phytoremediation. Degradation of pesticides, plastics, polymers, and industrial chemicals. Environmental audit: energy, water, and green audits
- 2. 3. Environmental Management & Sustainable Development: Human-environment interactions, resource utilization, and ecological footprints. Guidelines for sustainability and poverty reduction. Role of national and international agencies (UNESCO, MAB, CPCB, NGOs). Agricultural and industrial sustainability strategies
- 2.4. Environmental Economics & Policy Tools. Economic evaluation of pollution control, costbenefit analysis. Environmental laws, Earth Summits and protocols, and management strategies. Disaster management, risk analysis, and regulatory frameworks

Module 3: Biodiversity, Conservation, and Restoration Ecology

- 12 hrs
- 3.1. Conservation Ecology and Biodiversity: RET species, keystone species, hotspots, IUCN Red List. Biodiversity levels: species, community, ecosystem, landscape. Causes of biodiversity loss and threats to ecosystems.
- 3.2. Conservation Strategies: In-situ and ex-situ conservation: National Parks, Sanctuaries, Biosphere Reserves, Sacred Groves, Botanic Gardens. Community participation, indigenous ge, ecotourism. Role of biotechnology in conservation (seed banks, tissue culture).
 - toration Ecology and Case Studies: Ecosystem restoration concepts, UN Decade on Restoration. Case studies: Ganga River, Chernobyl, London/Delhi smog, an, Taj Mahal. Chipko, Silent Valley Movement,
- 3.4. Modern Monitoring Tools for Biodiversity and Ecosystems: GIS, Remote Sensing, GPS, geospatial mapping, geotagging. Molecular tools: DNA barcoding, environmental DNA

(eDNA). Biomonitoring using indicator species and bioassays. Modelling ecosystem health and grestoration success

Module 4. Environmental Chemistry and Analytical Techniques 12 hrs

- 4.1. Atmospheric Chemistry and Pollution: Chemical reactions, photochemical smog, ozone depletion, greenhouse gases. Sources and effects of aerosols, particulate matter, heavy metals.
- 4.2. Water and Soil Chemistry: Water pollutants: heavy metals, organics, microplastics, gradioactive materials. Eutrophication, groundwater contamination, potable water quality. Soil contamination: pesticide residues, industrial effluents, remediation techniques
- 24.3. Remote Sensing & GIS in Environmental Science: Principles of remote sensing, data Racquisition, image processing. GIS fundamentals, spatial analysis, geospatial variability, mapping pollution hotspots. Applications in natural resource management, biodiversity monitoring, and disaster management
- 4.4. Analytical Tools and Techniques: Environmental sensors, drones, LiDAR, satellite-based monitoring. Biomarkers and molecular indicators for ecosystem health. Risk assessment, modelling environmental impacts, decision-support systems.

Module 5. TEACH SPACE

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

2Portable Photosynthesis System, Soil pH and Conductivity Meter, Soil Respiration Analyzer, CO₂ Flux Meter, Portable X-ray Fluorescence (pXRF) Spectrometer, Turbidimeter, Nephelometer, Aethalometer / Aerosol Spectrometer, Gas Analyzer (e.g., CO₂, NOx, SO₂ Analyzers), Particulate Matter (PM) Monitor.

Practical 10 Hrs

- 1. Estimation of DO2,BOD and Primary productivity using Winkler method from fresh water, estuarine and marine waters and comparison and report submission.
- 2. Assessment of DCO2
- 3. Estimation of soil PH
- 4. Estimation of Light intensity using Lux meter
- 5. Estimation of rate of photosynthesis using Photosynthesis meter

5. Estimation of rate of photosynthesis Suggested Assignment Topics- Theory 1. Various eco-movements in Kerala at 2. National parks and hotspots in India 3. Types, causes and impacts of pollution 4. Electromagnetic pollution 5. Light as a pollutant 6. Oxygen as a pollutant 7. Ozone as pollutant 8. Global warming and its impacts 9. New tools and techniques in ecology suggested Assignment Topics- Practical 1. GIS study of a polluted area/mining 2. Photosynthetic rate estimation in plants

- 1. Various eco-movements in Kerala and India
- 2. National parks and hotspots in India
- Types, causes and impacts of pollution

- 9. New tools and techniques in ecology

- 1. GIS study of a polluted area/mining area/quarry
- Photosynthetic rate estimation in plants of polluted areas

Sl. No	Title/Author/Publishers of the Book specific to the module
	Begon, M., Townsend, C.R., & Harper, J.L. (2021). Ecology: From Individuals to
	Ecosystems. Wiley-Blackwell.
	Chapman, J.L. & Reiss, M.J. (2008). Ecology: Principles and Applications.
自然是漢字是	Cambridge University Press.
2	Clewell, A.F. & Aronson, J. (2013). Ecological Restoration: Principles, Values,
3	and Structure of an Emerging Profession. Island Press.

	4	Cunningham, W.P. & Cunningham, M.A. (2020). Environmental Science: A
156	4	Global Concern. McGraw Hill.
1,	5	Dash, M.C. (2020). Fundamentals of Ecology. McGraw Hill India.
Page	6	Gadgil, M. & Guha, R. (1995). Ecology and Equity: The Use and Abuse of Nature
- 1	0	in Contemporary India. Routledge.
PM	7	Groom, M.J., Meffe, G.K., & Carroll, C.R. (2006). Principles of Conservation
04:56	/	Biology. Sinauer Associates.
04:	8	Hem, J.D. (1985). Study and Interpretation of the Chemical Characteristics of
125		Natural Water. USGS Water-Supply Paper 2254.
ec-2025	9	Hunter, M.L. (1996). Fundamentals of Conservation Biology. Blackwell Science.
Dec	10	Jensen, J.R. (2015). Introductory Digital Image Processing: A Remote Sensing
19-D	10	Perspective. Pearson.
on .	11	Krebs, C.J. (2014). Ecology: The Experimental Analysis of Distribution and
	11	Abundance. Pearson.
DEMIC	12	Lillesand, T., Kiefer, R., & Chipman, J. (2015). Remote Sensing and Image
ADE	12	Interpretation. Wiley.
YC/	13	Maiti, S.K. (2013). Handbook of Methods in Environmental Studies. ABD
2		Publishers.
RAI	14	Manahan, S.E. (2017). Environmental Chemistry. CRC Press.
STR	15	Odum, E.P. & Barrett, G.W. (2005). Fundamentals of Ecology. Thomson
EGIS.	13	Brooks/Cole.
R	16	Odum, H.T. (1994). Ecological and General Systems. University Press of
Ţ	10	Colorado.
EPL	17	Peavy, H.S., Rowe, D.R., & Tchobanoglous, G. (2013). Environmental
	1,	Engineering. McGraw Hill.
proved by	18	Primack, R.B. (2020). Essentials of Conservation Biology. Oxford University
vec		Press.
pro	19	Raven, P.H., Berg, L.R., & Hassenzahl, D.M. (2012). Environment. Wiley.
Ap	20	Ricklefs, R.E. (2008). <i>The Economy of Nature</i> . W.H. Freeman.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION					
Hands-on experiments	➤ Lecturing					
Collaborative learning-Group	> ICT					
discussion Practical sessions with						
	demonstrations and hands on					
	experiences					
ASSESSMENT RUBRICS		Marks				
End Semester Evaluation ESE		70				
University Examination		70				
Continuous Comprehensive Assessment C	CCA	30				
Continuous Comprehensive Assessment C						
-	e-false, fill-in-the-blank, matching, short answer	10				
Examinations (multiple choice, true		10 5				
Examinations (multiple choice, true and critical thinking questions)	e-false, fill-in-the-blank, matching, short answer					

- Juestions to test Outcomes.

 2 Marks Question (Understanding)

 6 Marks Questions (Applying and Analyzing):

7 Marks Questions (Evaluating and Creating): 14 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course enhances employability by preparing graduates for careers in environmental research, pollution monitoring, biodiversity conservation, ecological consultancy, and sustainability management across academic, governmental, and and and activities across.

31	ADVANCED BIO	ADVANCED BIOINFORMATICS					
DSC	Semester: 8	Hrs/week: 3 Theory + 1 PRACTICAL	Credits: 4				

Course Pre-requisite:

- 7. Knowledge in Biology at 101-199 level
- 8. Ability to write examination in English

Course Ou	tcomes
Course Out	Retrieve, manage, and interpret data from major biological databases.
CO2	Perform sequence alignment, phylogenetic, and comparative genomic analyses.
CO3	Apply fundamental principles of functional genomics.

CO4	Integrate multi-omics data using systems biology and machine learning tools.
CO5	Conduct basic bioinformatics and sequence analysis experiments independently

Mapping of Course Outcomes to PSOs/Pos

>												
36 PI	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1		$\sqrt{}$	$\sqrt{}$									
%CO2			\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$						
CO3							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
ČCO4								$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	
င်္ CO 5										$\sqrt{}$		$\sqrt{}$

Course Description

This is an advanced undergraduate course designed for getting a comprehensive idea on genomics and functional genomics.

- First module is dealing with basics of biological databases, data organization, and mining strategies.
- Second module explores alignment algorithms, phylogenetic analysis, and genome comparison to understand evolutionary and functional relationships.
- Third module helps to integrate multi-omics data and model biological systems through computational and statistical frameworks.
- Final module supports to develop applied understanding of analytical pipelines, data management, and cross-platform integration..

This course will provide opportunities to get a strong foundation in advanced bioinformatics both theoretically and experientially.

- 20. Understand and compare the structure, organization, and utility of major biological databases, and perform data mining for genomic and proteomic information.
- 21. Apply and critically evaluate sequence alignment, annotation, and comparative genomics techniques to investigate biological relationships.
- 22. Integrate multi-omics data to analyze gene expression, pathways, and biological networks using systems biology frameworks.
- 23. Design and implement reproducible analytical pipelines using modern bioinformatics tools, data standards, and workflow systems.
- 24. Interpret and communicate biological insights derived from computational analyses with awareness of algorithmic logic, data quality, and research relevance.

Oredit Credit			Teaching H	ours	Assessment			
□ L/T	P/I Total		L/T/P	Total	CCA	ESE	Total	
Order 3	1	4	3+ 0+ 2 (45+ 0 + 30)	5	35	65	100	

Module 1: Biological Databases and Data Mining 12 hours

- 21.1. Overview of Biological Databases: Types: Primary, Secondary, and Specialized Databases. Comparison between GenBank, EMBL, and DDBJ – data structure, update frequency, and curation. Protein databases: UniProt, RefSeq – annotation pipelines and data formats (FASTA, GenBank, XML).
- ₹1.2. Genome and Transcriptome Resources: Browsers: Ensembl, UCSC Genome Browser, Transcriptome repositories: GEO, ArrayExpress – structure, metadata standards, query formulation. Functional annotation: Gene Ontology (GO), KEGG, Reactome – ontology eterms, relationships, and biological interpretation. GO vs. KEGG (hierarchical ontology vs. epathway representation).
- \$1.3. Data Mining and Querying Techniques: SQL vs. NoSQL in bioinformatics structural differences, advantages, and applications. Text mining, pattern recognition, and motif discovery. Sequence similarity searching: BLAST vs. FASTA – algorithms, scoring systems, sensitivity comparison.
- ≥1.4. Next-Generation Data Repositories and Metadata Analysis: NGS databases: SRA, ENA, TCGA – structure, data submission, and retrieval. Data preprocessing steps: Quality control, filtering, and normalization.

Module 2: Sequence Analysis and Comparative Genomics 12 hours

- 2.1. Sequence Alignment and Analysis: Pairwise and multiple sequence alignment; scoring Ematrices (PAM, BLOSUM); alignment algorithms (Needleman–Wunsch, Smith–Waterman).
- 22.2. Phylogenetics and Evolutionary Analysis: Tree construction (Neighbor-Joining, Maximum Likelihood, Bayesian inference); molecular evolution models, bootstrapping.
- ²2. 3.**Genome Annotation and Comparative Genomics** Structural and functional annotation; gene prediction; ortholog/paralog identification.
- -2.4. Transcriptome and Variant Analysis: RNA-Seq pipelines; SNP/indel detection; functional impact prediction.

Module 3: Functional Genomics, Systems Biology, and Network Analysis (12 hours)

- 3.1. Functional Genomics and Pathway Mapping: Integration of transcriptomic, proteomic, and metabolomic datasets. DAVID, GSEA, Reactome, KEGG Mapper.
- 3.2. Systems Biology and Network Analysis: Gene regulatory networks, metabolic pathways, protein-protein interaction (PPI) networks. Cytoscape, STRING, Gephi. Network metrics: degree, centrality, modularity.
- 3.3. High-Throughput Data Integration and Machine Learning Applications: Supervised vs. unsupervised learning in bioinformatics. Applications: clustering of expression data, disease Sclassification, and feature selection. Traditional statistics vs. ML approaches – interpretability vs. predictive power. Tools: Scikit-learn, TensorFlow in omics data analysis.
- 3.4. Data Standards, Reproducibility, and FAIR Principles. Concepts of data sharing, metadata standards, and open science. Workflow automation tools: Galaxy, Snakemake, Nextflow.

Module 4. Advanced Bioinformatics Tools and Analytical Pipelines (12 hours)

- 4.1. Bioinformatics Tools and Frameworks: Overview of EMBOSS, Bioconductor, Biopython, and Galaxy. Command-line vs. GUI tools – speed, flexibility, and scalability.
- 4.2. Workflow Design and Automation: Pipeline creation, modularity, and version control. Workflow management systems: Galaxy vs. Snakemake vs. Nextflow – comparative features and use cases.
- 4.3. Data Visualization and Interpretation: Use of R, Python (Matplotlib, Seaborn) for genomics visualization. Visualization strategies: heatmaps, volcano plots, PCA, and network maps.
- A-plications, Case Studies, and Future Directions: Comparative study of genome on tools, disease gene prediction workflows, and omics integration case studies.

 5. TEACH SPACE

 9 Hrs

dule is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 9Hrs

Basics of Protein Engineering and Designing. Structure based Drug designing. Docking.

Practical 30 Hrs

- 7. Exploring NCBI and UniProt databases for gene/protein information
- 8. Retrieving sequences in FASTA format and converting between file types
- Performing pairwise sequence alignment using BLAST
- 10. Conducting multiple sequence alignment using Clustal Omega
- 11. Identifying conserved domains and motifs using Pfam and PROSITE
- 12. Building a phylogenetic tree using MEGA or Phylogeny.fr

16. Characteristics of each databases 17. Comparison of different tools used in bioinformatics **18.** Applications of multi-omics.

- 18. Predicting secondary structure using PSIPRED
- 19. Visualizing protein structures using PyMOL or Chimera
- 20. Annotating genes with KEGG or GO terms
- 21. Creating a basic workflow in Galaxy or Bioconductor for sequence analysis
- Suggested Assignment Topics- Theory

 Suggested Assignment Topics- Practical

 18. Predicting secondary structure using
 19. Visualizing protein structures using
 20. Annotating genes with KEGG or GO
 21. Creating a basic workflow in Galaxy
 22. Creating a report and interpretation 22. Creating a report and interpretation summary – from raw sequence to biological conclusion

EGIST	Sl. No	Title/Author/Publishers of the Book specific to the module
SEG.	1	Aloy, P., & Russell, R. B. (2006). Structural systems biology: Modelling protein
Y		interactions. Nature Reviews Molecular Cell Biology, 7(3), 188–197.
		https://doi.org/10.1038/nrm1858
Approved by DEPUT		Altschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic
∑ 	. 2	local alignment search tool. Journal of Molecular Biology, 215(3), 403–410.
d D		https://doi.org/10.1016/S0022-2836(05)80360-2
OVE		Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence
ppr	3	data. Babraham Bioinformatics.
		https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
C3/21060/2024		Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., et
30/2	4	al. (2000). Gene Ontology: Tool for the unification of biology. Nature Genetics,
106		25(1), 25–29. https://doi.org/10.1038/75556
3/2	5	Baxevanis, A. D., & Ouellette, B. F. F. (Eds.). (2005). Bioinformatics: A practical
		guide to the analysis of genes and proteins (3rd ed.). Wiley-Blackwell.
C/ACAD		Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A
) A	6	practical and powerful approach to multiple testing. Journal of the Royal Statistical
		Society: Series B, 57(1), 289–300.
ACAD	7	Bioconductor Project. (2024). Bioconductor: Open software for bioinformatics.
	,	https://www.bioconductor.org
ersity Order of File		Burley, S. K., Bhikadiya, C., Bi, C., Bittrich, S., Chen, L., Crichlow, G. V., et al.
r of	8	(2021). RCSB Protein Data Bank: Powerful new tools for exploring 3D structures
de	Ü	of biological macromolecules. Nucleic Acids Research, 49(D1), D437–D451.
Ō		https://doi.org/10.1093/nar/gkaa1038
sity	9	Consortium, E. P. (2012). An integrated encyclopedia of DNA elements in the
/ei		human genome. Nature, 489(7414), 57–74. https://doi.org/10.1038/nature11247
		Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene Expression Omnibus: NCBI
É		gene expression and hybridization array data repository. Nucleic Acids Research,
		30(1), 207–210. https://doi.org/10.1093/nar/30.1.207
]	11	Finn, R. D., Coggill, P., Eberhardt, R. Y., Eddy, S. R., Mistry, J., Mitchell, A. L., et
		al. (2016). The Pfam protein families database: Towards a more sustainable future.

		Nucleic Acids Research, 44(D1), D279–D285. https://doi.org/10.1093/nar/gkv1344
e 161	12	Gish, W., & States, D. J. (1993). Identification of protein coding regions by database
	12	similarity search. Nature Genetics, 3(3), 266–272. https://doi.org/10.1038/ng0393-266
ag	13	Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and
-	13	Genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
PM	14	Lesk, A. M. (2019). Introduction to bioinformatics (5th ed.). Oxford University
26	14	Press.
04:	15	Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.).
ec-2025	13	Cold Spring Harbor Laboratory Press.
	16	National Center for Biotechnology Information (NCBI). (2024). NCBI Databases
	10	and Tools. https://www.ncbi.nlm.nih.gov
9-	17	Pevsner, J. (2019). Bioinformatics and functional genomics (3rd ed.). Wiley-
n 1	1 /	Blackwell.
()	18	Quackenbush, J. (2001). Computational analysis of microarray data. Nature
\mathbb{M}	10	Reviews Genetics, 2(6), 418–427. https://doi.org/10.1038/35076576
DE		Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et
CA	19	al. (2019). STRING v11: Protein–protein association networks with increased
\leq	1)	coverage. Nucleic Acids Research, 47(D1), D607–D613.
AR		https://doi.org/10.1093/nar/gky1131
3TR		Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular Evolutionary
9	20	Genetics Analysis version 11. Molecular Biology and Evolution, 38(7), 3022–3027.
Ä		https://doi.org/10.1093/molbev/msab120

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination					
Practical Examination	15				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)					
Writing assignment					
Reports/ presentations/ demonstrations by the students	10				
Internal Practical examination	10				

Sample Questions to test Outcomes.

- 2 Marks Question (Understanding)
- Marks Questions (Applying and Analyzing):
- ▼ Marks Questions (Evaluating and Creating):
- Questions (Evaluating and Creating):

ability for the Course / Programme

n successful completion will be best suited for the research as well as jobs on biological data systems, comparative genomics, systems biology, and computational methods

Order of File ACAD C/ACAD C3/21060/2024 Approved by DEPUTY

32 Phytogeography of N		of North Kerala	KU8DSCPLS407
DSC	Semester: 8	Hrs/week: 4 Theory	Credits: 4

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course Ou	Course Outcomes					
CO1	Explain the major geomorphological, climatic, and ecological determinants					
	that influence plant distribution and vegetation patterns in North Kerala.					
CO2	Identify and classify the dominant vegetation types and endemic plant communities characteristic of the region.					
CO3	Analyze the impacts of anthropogenic activities on natural vegetation and biodiversity in different ecological zones.					
CO4	Evaluate the significance of conservation strategies in maintaining regional phytodiversity and ecosystem stability.					
CO5	Apply field, laboratory, and geospatial research tools to conduct independent investigations in phytogeography and vegetation ecology.					

Mapping of Course Outcomes to PSOs/Pos

K H	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$						
СОЗ							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								\checkmark	~	$\sqrt{}$	~	
ŠCO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This course emphasizing geomorphol conservation

First with

Secce
Thir the s

Four kera
This course

Course Objectives: This course explores the floristic, ecological, and geographical diversity of North Kerala, emphasizing the relationship between landforms, climate, and vegetation. It covers geomorphological influences, ecosystem typology, endemic flora, anthropogenic pressures, and conservation practices

- First module is dealing with geomorphological and ecological features of North Kerala with an emphasis to vegetations and their adaptations.
- Second module is giving and idea on the local flora of North Kerala.
- Third module is focussing on the resistance of the plants as well as of the local people for the sustenance during the pollution and several natural and anthropogenic threats.
- Fourth module is focussing on the tools and techniques for floristic research in North kerala.

This course will provide you opportunities to know about your locality more to think globally.

terpret the geomorphological and climatic determinants of vegetation patterns in North Kerala. entify and classify major vegetation types and characteristic flora of different ecological zones. alyze biotic and abiotic pressures affecting vegetation distribution and ecosystem health.

⁷ aluate regional conservation practices and phytogeographical significance of protected areas and sacred groves.

`
Φ
9
a
Д

. Pag	Credit		Teaching H	lours	Assessment		
≧L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
04:56	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module 1: Module I: Geomorphology, Ecosystems, and Plant Adaptations 12 hours

- 51.1. Major Geomorphological Structures and Implications: Wayanad Plateau, Banasura Hill grange, and high-elevation ridges. Escarpments, slopes, and river valley systems (Valapattanam, Chandragiri). Coastal plains, barriers, and lateritic uplands.
- \$1.2. Western Ghats Region of North Kerala: Altitudinal gradients, rainfall patterns, and montane forests. Shola–grassland complexes and riparian vegetation mosaics.
- 1.3. Laterite Hills and Scrub Ecosystems: Formation of laterite soils, erosion patterns, and characteristic flora. Drought and nutrient-poor soil adaptations in Lannea coromandelica, Wrightia tinctoria, Cleistanthus collinus.
- 1.4. Coastal and Mangrove Ecosystems: Characteristics of North Kerala Mangroves. Key mangrove species: Avicennia officinalis, Rhizophora mucronata, Bruguiera gymnorhiza. Salt tolerance, aerial roots, and vivipary adaptations.

-Module 2: Floristic Diversity and Plant Communities of North Kerala 12 hours

- 2.1. Vegetation Types and Dominant Plant Groups: Tropical wet evergreen, semi-evergreen, moist deciduous, lateritic scrub, and mangrove vegetation.
- 2.2. Dominant plants and plant groups. A brief account on flora of north Kerala, including Salgae, bryophytes, pteridophytes, gymnosperms and angiosperms. Medicinal and Economically Important Plants: Acorus calamus, Nothapodytes nimmoniana, Rauvolfia serpentina, Cardiospermum halicacabum, Curcuma spp. Traditional usage patterns and ethnobotanical documentation
- 2.3. Endemism and Biodiversity Hotspots: Western Ghats as a global biodiversity hotspot. Notable local endemics: Dipterocarpus indicus, Syzygium travancoricum, Gluta travancorica. Relevance of endemic richness for conservation prioritization.
- 2.4. Sacred Groves and Cultural Plant Conservation: Ecological and spiritual importance of Kavus. Poyilkavu (Kozhikode), Neeliyar Kottam (Kannur), Kanathoor (Kasaragod). Role in insitu conservation of rare and medicinal flora.

Module 3: Resistance to threats through Conservation Movements 12 hrs

- 3.1. Human-Modified and Plantation Landscapes: Ecological effects of rubber, coconut, cashew, and spice plantations. Edge effects, habitat fragmentation, and biodiversity loss.
- 3.2. Anthropogenic Threats to Flora: Deforestation, urbanization, overharvesting, quarrying, and sand mining. Case: Quarry impacts on the lateritic hills of Kozhikode and Kannur.
- 53.3. Pollution and Degraded Ecosystems: Industrial and agricultural pollution affecting Chaliyar and Valapattanam rivers. Effects on riparian vegetation and soil microflora.
- ≥3.4. Eco-Movements and Conservation Initiatives: Historical and modern movements: Silent Valley Movement, Malabar Mangrove Action Plan, SEEK's Sacred Grove Preservation.

areas: Aralam Wildlife (Butterfly) Sanctuary, Wayanad Wildlife Sanctuary. Role of orest Department, NGOs, and community-driven conservation

4: Applied Phytogeography and Passageh Tools

4: Applied Phytogeography and Research Tools 12 hours

nomic Plant Utilization: Spices: Elettaria cardamomum, Piper nigrum, Syzygium aromaticum. Cultivation impacts on native vegetation. Timber and NTFPs: Teak, bamboo, honey, essential oils. Need of sustainable harvesting.

- 4.2. Industrial Interactions and Environmental Impacts: Effects of rubber, coir, and cashew gindustries on ecosystem integrity. Environmental audit of local processing units.
- 4.3. Restoration and Habitat Management: Afforestation and rewilding with native species (Terminalia paniculata, Hopea ponga). Wetland and mangrove rehabilitation programs in Kadalundi and Bekal.
- 4.4. Tools and Techniques for Botanical Research: Field: Quadrat and transect sampling, evegetation profiling, herbarium preparation. Lab: DNA barcoding, phytochemical screening, seed germination studies. Geospatial: Remote sensing, GIS-based vegetation mapping, habitat fragmentation and diversity analysis.

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Western Ghats: The World Heritage Centre as well as Biodiversity hot spot. Reports on Western ghats Gadgil Committee report, Kasturirangan report, etc

₹Practical 10 Hrs

- 1. Biomonitoring using indicator species
- Soil and water quality analysis
- 3. GIS-based habitat loss assessment
- 4. Long-term vegetation monitoring
- 5. Carbon sequestration studies
- 6. Environmental impact assessment (EIA)
- 7. Land-use change analysis
- 8. local field visit sites such as Aralam, Kadalundi, and Neeliyar Kottam
- 9. Collection of different types of soils

Suggested Assignment Topics- Theory 1. Differences between Kasthurirang 2. Western ghat biodiversity 3. Mangrove diversity of north Kera

- 1. Differences between Kasthurirangan and Gadgil reports
- 3. Mangrove diversity of north Kerala

- 4. Laterite hill flora and fauna

 Suggested Assignment Topics- Practical

 1. Quadrat analysis of mangrove areas

 2. Calculating the IVI and Diversity In Quadrat analysis of mangrove areas
 - 2. Calculating the IVI and Diversity Indices of mangroves and grass land ecosystems

AD (Sl. No	Title/Author/Publishers of the Book specific to the module
AC/	1	Anilkumar, N. (2002). Ecological studies on sacred groves of Kerala. Kerala Forest
C	1	Research Institute (KFRI) Research Report No. 230.
9	2	Balakrishnan, N. P., & Henry, A. N. (1992). Flora of Tamil Nadu, India. Botanical Survey
C	<i>L</i>	of India.
6 ₽	3	Champion, H. G., & Seth, S. K. (1968). A revised survey of the forest types of India.
ΙĪ	3	Government of India Press.
of.	4	Chandran, M. D. S., & Gadgil, M. (1993). Sacred groves and sacred trees of Uttara
der	4	Kannada. Environmental Conservation, 20(1), 41–47.
Ö	5	Chandran, M. D. S., & Ramachandra, T. V. (2011). Land cover and land use dynamics of
ity	, 3	the Western Ghats. Indian Institute of Science, Bangalore.
ers	6	Daniels, R. J. R. (2001). Biodiversity of the Western Ghats: An overview. Ashoka Trust for
•	###### =	Research in Ecology and the Environment (ATREE).
饕		Das, S., & Jayakumar, S. (2015). Landscape-scale vegetation mapping in the Western
矍		Ghats using remote sensing. Journal of the Indian Society of Remote Sensing, 43(4), 637–
		648.
	Q	Datar, M. N., & Lakshminarasimhan, P. (2013). Flora of Maharashtra State: Dicotyledons
	0	(Vol. 2). Botanical Survey of India.

		Davidar, P., Sahoo, S., Mammen, P. C., Acharya, P., Puyravaud, J. P., Arjunan, M.,
9	9	Garrigues, J. P., & Roessingh, K. (2010). Assessing the extent and causes of forest
166		degradation in India. Biological Conservation, 143(12), 2937–2944.
Page	10	Gopalan, R., & Nair, S. C. (2011). Vegetation and biodiversity of the Western Ghats of
Ь	10	Kerala. KFRI Research Report.
_	11	Gopalan, R., & Nair, S. C. (2011). Vegetation and biodiversity of the Western Ghats of
PM	11	Kerala. KFRI Research Report No. 282.
04:56	12	Henry, A. N., Kumari, G. R., & Chithra, V. (1987). Flora of Kerala (Vols. 1–3). Botanical
	12	Survey of India.
2025	12	IIRS–ISRO. (2021). Remote sensing applications in forest vegetation mapping of the
-20	13	Western Ghats. Indian Institute of Remote Sensing.
-jec-	14	IUCN. (2023). The IUCN Red List of Threatened Species. https://www.iucnredlist.org
9-D		Jose, P. A., & Nair, S. M. (2014). Diversity and structure of sacred groves in northern
_	15	Kerala. Tropical Plant Research, 1(2), 53–60.
no (Joshi, N. V., & Gadgil, M. (1991). On the patterns of distribution of species common to
C	16	India and Sri Lanka. Proceedings of the Indian Academy of Sciences (Animal Sciences),
ΕN	10	100(1), 47–58.
ACADEMIC		Kannan, R., & James, D. A. (1999). Tropical forest bird communities and conservation in
C	17	the Western Ghats, India. Journal of the Bombay Natural History Society, 96(3), 383–398.
$\overline{}$		Kerala Forest Research Institute (KFRI). (2020). <i>Biodiversity and ecosystem services of</i>
ΥAF	18	Kerala's protected areas. Peechi: KFRI.
EGISTRAR		Kerala State Biodiversity Board (KSBB). (2019). People's Biodiversity Register of
(5)	19	Wayanad, Kannur, Kozhikode, and Kasaragod Districts. Government of Kerala.
RE(Krishnan, R. M., & Suresh, H. S. (2017). Phytogeographical affinities and endemism in
	20	the Western Ghats. Current Science, 113(6), 1083–1088.
EPUTY		Manoharan, S., & Kumar, S. V. (2015). Plant diversity of lateritic hills of Kannur district,
E	21	Kerala. Journal of Economic and Taxonomic Botany, 39(1–4), 125–136.
9		Menon, S. (2002). Ecology and conservation of tropical rain forests in India. Naya
d by	22	Prokash.
Approved	22	Mohanan, C. N., & Nair, C. T. S. (2003). Plant resources of Kerala: Medicinal and
OLO	23	aromatic plants. KFRI Handbook No. 15.
Api	2.4	Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A., & Kent, J. (2000).
74	24	Biodiversity hotspots for conservation priorities. <i>Nature</i> , 403(6772), 853–858.
20,	25	Nayar, T. S. (1997). Flora of Kerala: Analysis. Botanical Survey of India.
/09		Nayar, T. S., Beegam, A. R., & Mohanan, N. (2014). Flowering plants of Kerala: A
10	26	handbook. TBGRI.
ACAD C/ACAD C3/2106		Pascal, J. P. (1988). Wet evergreen forests of the Western Ghats of India: Ecology,
C	27	structure, floristic composition and succession. Institut Français de Pondichéry.
A		Prasad, S. N., Ramachandra, T. V., & Subramanian, D. K. (2002). Vegetation mapping of
AC	28	the Western Ghats using satellite remote sensing data. <i>Current Science</i> , 83(10), 1232–
$^{\circ}$	20	1238.
AD		Radhakrishnan, C., & Nair, M. V. (2007). <i>Biodiversity of Kerala</i> . Kerala Forest Research
C	29	Institute.
e/		Rodgers, W. A., & Panwar, H. S. (1988). <i>Biogeographical classification of India</i> . Wildlife
iΞ	30	, , , , , , , , , , , , , , , , , , , ,
ľo_		Institute of India.
oe	31	Sukumaran, S., & Jeeva, S. (2008). Sacred groves of Kerala: A repository of endemic
Ō		flora. Indian Journal of Traditional Knowledge, 7(3), 426–429.
ersity Order of File	32	WWF India. (2018). Western Ghats biodiversity hotspot: Conservation strategies. WWF–India.
/er		IIIUIA.

HING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Field visit	demonstrations and hands on

experiences

ASSESSMENT RUBRICS		Marks
End Semester Evaluation ESE		70
University Examination		70
Continuous Comprehensive Assessment CCA		30
 Examinations (multiple choice, true-false and critical thinking questions) 	e, fill-in-the-blank, matching, short answer	10
Writing assignment		5
• Study reports on north Kerala.		5
 Internal Practical Examination 		10

Employability for the Course / Programme

33	Applications of Botany in	Industries - North Kerala	KU8DSCPLS408
DSC	Semester: 8	Hrs/week: 3 Theory + 1 PRACTICAL	Credits: 4

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course O	Course Outcomes							
CO1	Identify and describe key plant species and their industrial uses in Kerala.							
CO2	Demonstrate knowledge of processing, preservation, and quality assessment of timber, bamboo, fibers, dyes, and spices.							
CO3	Evaluate industrial products for compliance with quality, safety, and sustainability standards.							
CO4	Integrate botanical and industrial knowledge to suggest innovations in plant-based products and bioproducts.							
CO5	Prepare project proposals or operational plans for plant-based industrial enterprises.							

Mapping of Course Outcomes to PSOs/Pos

EGIS	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
5CO2			$\sqrt{}$	V	$\sqrt{}$	$\sqrt{}$						
ECO3							$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark		
CO4								\checkmark	\checkmark	\checkmark	\checkmark	
CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This course is an inducing course designed for the undergraduates

- First module explores Kerala's timber resources, including teak and rosewood, and the softwoods commonly used in plywood and furniture.
- Focus on plant fibers (cotton, coir, banana fiber, sisal) and their industrial processing, coir industry practices, natural dyes, and bamboo/rattan treatment for furniture and handicrafts will be gathered by the learning of the second module.
- Third module covers spice and essential oil processing, medicinal plant-based industries, agro-processing of food products, and plant biopolymers.
- The final module Introduces floriculture, plant-based cosmetics, eco-tourism, and industrial quality assurance.

By the completion of this course students will be equipped to work in research and development, sustainable product design, and consultancy in botanical and industrial applications.

- 1. Understand major plant-based industries in Kerala, including timber, bamboo, fiber, spice, and medicinal plant
- 2. Learn processing methods, treatment procedures, and quality control standards for industrial plant products. amine the economic, ecological, and sustainability implications of plant resource utilization. pply analytical and phytochemical techniques to assess plant-based products.
 - plore research and innovation opportunities in plant-based industrial products and value addition.

Credit **Teaching Hours** Assessment

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
ge 169	1	4	$3+0+2 \\ (45+0+30)$	5	35	65	100

Module 1: Timber and Wood-based Industries 12 Hrs

- 1.1. Plywood and Timber Industry: Major timber species in Kerala: Timbers: Teak (*Tectona grandis*) and Rosewood (*Dalbergia latifolia*). Major Soft woods of the area and their uses. Basic procedures: log selection, seasoning, veneer preparation, lamination, bonding techniques, Grades of plywood: commercial, marine, and decorative grades. Quality control: moisture content, bonding strength, warping, fungal resistance.
- 21.2. Rubber-based Industry: Rubber (*Hevea brasiliensis*). Rubber extraction and processing: Elatex collection, coagulation, crepe, smoked sheets. Industrial applications: gloves, footwear, adhesives, rubberwood furniture. Grades of rubber: TSR (Technically Specified Rubber), latex grades, crepe grades. Quality checking: dry rubber content, ash content, tensile strength, color pindex
- 21.3. Paper and Pulp Industry: Raw material: bamboo, eucalyptus, bagasse, rubberwood residues. Basic processes: pulping (chemical and mechanical), bleaching, paper formation, finishing. Paper grades: writing, printing, packaging, specialty papers. Quality control: fiber length, grammage, opacity, tensile strength, whiteness index
- 51.4. Wood Preservation and Value Addition: Preservation methods: chemical treatments, pressure treatment, fire retardants. Wood-based bioproducts: veneers, laminates, particle boards. Research focus: development of eco-friendly preservatives, bamboo composites

Module 2: Bamboo, Fibre and Dye based industries 12 hrs

- 2.1. Plant Fibers and Textiles: Cotton (Gossypium spp.), coir (Cocos nucifera), banana fiber (Musa spp.), sisal (Agave sisalana). Fiber processing: retting, decortication, spinning, weaving, finishing. Grades: long staple, short staple, coir mats, coir yarns. Quality checking: fiber strength, fineness, moisture content, color uniformity.
- 2.2. Coir Industry in Kerala: Production chain: husk collection, retting, fiber extraction, spinning, mat and rope making. Industrial products: mattresses, ropes, brushes, geotextiles. Research areas: enhancing fiber yield, eco-friendly retting methods, mechanical processing innovations.
- 2. 3. Natural Dyes and Pigments: Dye-yielding plants: Indigofera tinctoria, Curcuma longa, Bixa Orellana. Extraction procedures: aqueous, solvent, enzymatic methods. Applications: textile dyeing, food coloring, cosmetic formulations. Quality checking: color fastness, pH stability, concentration, purity.
- \$2.4.Bamboo rattan: Bamboo and rattan for handicrafts, construction, and furniture. Sun/Kiln drying, chemical, mechanical and temperature treatments for seasoning, preservation and coating.

Module 3: Agro-based and Phytochemical Industries 12 hrs

- 3.1. Spice and Essential Oil Industry: Major spices of Kerala: black pepper, cardamom, clove, cinnamon, nutmeg. Basic procedures: harvesting, drying, extraction, distillation, packaging. Grades of spice products: whole, powdered, essential oil grades. Quality checking: volatile oil content, moisture, microbial contamination, adulteration detection.
- 23.2. Medicinal Plant-based Industries: Plants: Acorus calamus, Nothapodytes nimmoniana, Prauvolfia serpentina, Curcuma longa. Products: herbal extracts, decoctions, essential oils, ticals. Basic procedures: drying, extraction, formulation, standardization. Quality phytochemical profiling, HPLC/GC analysis, microbial testing
- o-processing and Food Industry: Plant-derived products: coconut oil, cashew nut, banana chips. Industrial processes: cleaning, drying, extraction, packaging. Grades: edible oils, snack grades, pulp/puree standards. Quality checking: moisture content, oil content,

free fatty acid %, microbial safety

⇒3.4. Plant Biopolymers and Biochemicals: Starch, cellulose, gums, resins (e.g., cashew nut shell [liquid]. Applications in adhesives, coatings, biodegradable plastics. Research focus: optimization of extraction, functional modification, industrial scale-up.

Module 4. Industrial Applications of Floristic and Ornamental Plants (12 hrs)

- 4.1. Floriculture and Ornamental Plants Industry: Cut flowers: orchids, anthuriums, hibiscus. Landscape plants for urban and resort horticulture. Basic procedures: propagation, nursery management, post-harvest handling. Grades: cut flower quality, potted plant standards, foliage grading
- 4.2. Plant-based Cosmetics and Fragrance Industry: Plants: vetiver (Chrysopogon zizanioides), sandalwood (Santalum album), rose (Rosa spp.). Procedures: essential oil extraction, formulation, packaging. Grades: cosmetic grade oils, perfumes, therapeutic oils. Quality checking: GC-MS analysis, purity, shelf-life stability...
- Eco-tourism and Floristic Resource Utilization: Botanical gardens, spice gardens, medicinal plant parks, herbal trails. Sustainable plant harvesting for tourism and education.
- 4.4. Industrial Quality Assurance and Standards: International and national standards: ISO, BIS, FSSAI. Analytical techniques: HPLC, GC-MS, spectrophotometry, microscopy. Product certification and traceability.

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and 2 outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Small scale industries. Mushroom cultivation and value addition. Mushroom pellett production. Live feed culture. Microgreen production. Cattle feed making. Starch powder from Arrowroot. Apiculture.

Practical 10 Hrs

- 1. Visit to industries and internship for 5 days. Make a report and it will be used for practical evaluation along with viva and presentation.
- 2. Starch production from various sources
- 3. Powder adulteration techniques

Suggested Assignment Topics- Theory Suggested Assignment Topics- Theory 1. Methods for various extractions 2. Coconut based industries 3. Musa based industries 4. Food processing industry Suggested Assignment Topics- Practical 1. Mushroom cultivation 2. Mushroom spawn production 3. Spice and condiment production 4. Curry powder adulteration checking

- 4. Curry powder adulteration checking.

er o	Sl. No	Title/Author/Publishers of the Book specific to the module
Ord		"Bondex Bamboo Care: Clear Protection for Outdoor Bamboo." (2024). Bondex Wood
2	. 1	Protection. Retrieved from https://bondexwood.com/products/wood-protection/bondex-
Si		<u>bamboo-care.html</u>
) /e	DI DAGE MET	Ahmad, S., & Sharma, R. (2018). Processing and utilization of medicinal plants in
뷣		India. New Delhi: Springer.
ÿ		Anon. (2023). Bamboo and rattan treatment for furniture and handicrafts. Retrieved
Ä	Yan da Taba	from https://www.fao.org/bamboo-rattan
╚	1 1	Arora, R. K., & Nayar, T. S. (1999). Plant resources of India: Fiber and dye plants.
	4	New Delhi: Botanical Survey of India.

	5	Bhattacharya, S. (2017). Industrial applications of spices and essential oils. Woodhead
71		Publishing. Page T. V. & Som M. C. (2001). Communical flowers. Volkston Novo Brokesh
Je 1	6	Bose, T. K., & Som, M. G. (2001). Commercial flowers. Kolkata: Naya Prokash.
Рас	7	Branden, C., & Tooze, J. (2012). <i>Introduction to protein structure</i> . Garland Science.
PM -	8	Chandrasekharan, S. (2015). Rubberwood: Processing and utilization in India. <i>Journal of Wood Science</i> , 61(2), 153-162.
04:56 F	9	Chopra, R. N., Nayar, S. L., & Chopra, I. C. (1956). <i>Glossary of Indian medicinal plants</i> . CSIR, India.
ec-2025 0	10	Das, S., & Nair, M. (2018). Sustainable bamboo furniture: Techniques and industrial relevance. <i>Journal of Bamboo and Rattan</i> , 17(1), 25-40.
c-2	11	FAO. (2020). Non-wood forest products: Bamboo and rattan. Rome: FAO.
9-De	12	Gopalan, P., & Nair, S. C. (2011). Vegetation and biodiversity of the Western Ghats of Kerala. Kerala Forest Research Institute.
n 1		Henry, A. N., Kumari, G. R., & Chithra, V. (1987). Flora of Kerala (Vols. 1–3).
0	13	Botanical Survey of India.
M	14	Indian Council of Forestry Research and Education (ICFRE). (2023). State of non-
DE	14	timber forest products in India: Focus on bamboo & rattan.
(ACADEMIC)	15	Kapoor, I., & Singh, M. (2016). Advances in coir processing and industrial applications. <i>Journal of Natural Fibers</i> , 13(3), 327-339.
AR	16	Kumar, A., & Singh, R. (2019). Plant-based natural dyes: Extraction, applications, and
R	10	eco-friendly processing. Dyeing & Textile Journal, 45(2), 77-92.
EGISTRAR	17	Menon, S. (2002). Ecology and conservation of tropical rain forests in India. Naya Prokash.
R	18	National Design & Research Forum. (2020). Sustainable furniture design with bamboo
4	10	& rattan. NID Publication.
DEPL	19	Nayar, T. S., Beegam, A. R., & Mohanan, N. (2014). Flowering plants of Kerala: A handbook. Tropical Botanical Garden & Research Institute.
by	20	Paschapal, J. P. (1988). Wet evergreen forests of the Western Ghats of India.
eq	20	Pondicherry: Institut Français de Pondichéry.
Approved by	21	Prasad, S. N., Ramachandra, T. V., & Subramanian, D. K. (2002). Vegetation mapping of the Western Ghats using satellite remote sensing data. <i>Current Science</i> , 83(10), 1232-1238.
)/2024	22	Radhakrishnan, C., & Nair, M. V. (2007). <i>Biodiversity of Kerala</i> . Kerala Forest Research Institute.
21060	23	Ramesh, S., & Sivakumar, K. (2019). Mechanical properties of treated rattan poles for furniture. <i>Indian Journal of Forest & Furniture Science</i> , 10(1), 52-60.
D C3/	24	Sharma, T., & Miao, L. (2021). Bamboo weaving in modern furniture: Materials, treatments, and design trends. <i>BioResources</i> , <i>16</i> (2), 2894-2906.
C/ACAD C3/2106	25	Singh, H., & Gupta, A. (2018). Comparative analysis of heat vs chemical treatment of bamboo. <i>Wood Material Science & Engineering</i> , 13(3), 135-145.
0	26	Tewari, D. N. (2000). <i>Bamboo preservation</i> . Forest Research Institute, India.
ersity Order of File ACAD	27	Thomas, S., & Ravindran, P. (2016). Treatment of rattan furniture: Preservation, mechanical performance, and finish. <i>International Journal of Furniture Science</i> , 12(4), 280-289.
er of	28	Van der Veen, M. (2015). <i>Biopolymers from plant resources: Applications and industrial relevance</i> . Woodhead Publishing.
ty Oro	29	World Bank. (2017). Enhancing forest-based value chains: The case of bamboo furniture in India. World Bank Report.
S		

9 S	
HING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Field visit	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS	Marl
End Semester Evaluation ESE	65
University Examination	50
Practical examination	15
Continuous Comprehensive Assessment CCA	35
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	10
• Internal PracticalExamination mple Questions to test Outcomes.	10
Marks Questions (Evaluating and Creating): mployability for the Course / Programme idents completing this course will be prepared for careers in plant-based industrial sectors.	
idents completing this course will be prepared for careers in plant-based industrial sectors.	

34	Advanced course in A	ngiosperm Systematics	KU8DSEPLS409
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4

- 3. Knowledge in Biology at 101-199 level
- 4. Ability to write examination in English

Course Ou	itcomes
CO1	Differentiate between major historical and phylogenetic classification systems and their modern relevance.
CO2	Apply international nomenclatural codes (ICBN & ICNCP) in naming and describing taxa.
CO3	Analyze molecular sequence data to infer phylogenetic relationships among disputed angiosperm families.
CO4	Perform DNA barcoding and interpret molecular phylogenies for species identification.
CO5	Develop digital herbarium specimens and integrate SEM/TEM morphological data for systematic studies.

Mapping of Course Outcomes to PSOs/Pos

RE	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark						
CO3							$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$		
CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	
ŠCO5									\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$

Course Description

This course provides an advanced understanding of the principles, methods, and modern protocols in angiosperm systematics, integrating molecular phylogenetics, DNA barcoding, and digital herbarium technologies to resolve taxonomic controversies and elucidate evolutionary relationships.

- First module analyzes classical and modern classification systems, nomenclatural codes, hybrid/cultivar rules, and taxonomic controversies in major angiosperm families.
- Second module focuses on the molecular foundations of angiosperm systematics by exploring nuclear, plastid, and mitochondrial markers, and illustrates how molecular data resolved long-standing disputes in key plant families.
- Third module provides hands-on theoretical understanding of DNA barcoding and molecular phylogenetics from gene selection and sequencing to phylogenetic tree construction and species delimitation.
- Fourth module examines ultrastructural taxonomy through SEM and TEM, and demonstrates digital herbarium development and morphological character coding as tools in integrative and data-driven systematics.

his course will provide you opportunities to see the merging of two knowledge rivers namely rgiosperm systematics and bioinformatics.

Course Objectives:

- 26. Understand and apply the rules and procedures of botanical nomenclature and cultivar registration.
- 27. Identify key molecular markers and genomic regions used in resolving taxonomic and phylogenetic disputes.
- 28. Execute laboratory-level molecular systematics techniques including DNA barcoding, sequencing, and phylogenetic reconstruction.
- 29. Integrate advanced morphological, ultrastructural, and digital documentation methods for comprehensive taxonomic analysis..

SZ Credit			Teaching H	ours		Assessment	
%L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
<u>П-61</u> и	0	4	4+ 0+ 0 (6+ 0 + 0)	4	30	70	100

Module 1: Classification, Nomenclature, and Historical Debates 12 hrs

- \$1.1 Natural system of classification: Engler and Prantl (1915). Comparison with Bentham & Hookers and APG IV. Strengths and limitations.
- 1.2.Phylogenetic system of classification: Hutchinson (1973): Comparison with Bentham & Hookers and APG IV. Strengths and limitations.
- 21.3.International Code of Botanical Nomenclature (ICBN): Rules for naming species, priority, typification, valid publication, conservation of names. Nomenclature of Hybrids and Cultivars: Interspecific hybrids, intergeneric hybrids, cultivar registration, International Code of Nomenclature for Cultivated Plants (ICNCP).
- 1.4. Taxonomic Controversies: Major Controversies in systematics- Inclusion and exclusion into a taxa; Subdivision of taxa. Controversy on valid name, etc.. Need of integrating molecular, morphological, and biogeographical evidence to resolve disputes.

Module 2: Major genes and genomes used for solving of disputes 12 hrs

- 2.1. Nuclear DNA markers: rDNA (ribosomal DNA)-18S rDNA, 26S rDNA, ITS (Internal Transcribed Spacer) regions. Low-copy nuclear genes: Genes like PHYC, GBSSI (waxy), NIA.
- 2.2. Plastid (chloroplast) DNA markers: Coding regions rbcL (large subunit of RuBisCO); matK (maturase K); ndhF, atpB, petD; Non-coding regions- trnL-F intergenic spacer, psbA-trnH, etc.
- 2. 3. Mitochondrial DNA and Whole plastid genomes (plastomes)
- 2.4. Major solved controversies: 1. Acantahceae- Varbenaceae-Lamiaceae. 2, Malvaceae-Sterculiaceae-Tiliaceae- Bombacaceae. 3. Scrophulariaceae. 4. Euphorbiaceae

Module 3: Molecular Systematics and DNA Barcoding 12 hr

- 3.1. DNA Barcoding Principles and Protocols: Gene regions (rbcL, matK, ITS), selection of primers, universality, pros and cons.
- 3.2. Laboratory Workflow: Sample collection, DNA extraction, PCR, sequencing, gel electrophoresis, quality assessment.
- 3.3. Phylogenetic Analysis: Sequence alignment, NJ, ML, Bayesian inference, barcode gap analysis, resolving cryptic species.
- 3.4. Applications and Case Studies: Identifying endangered, endemic, and economically important species; resolving taxonomic ambiguities and solving controversies.

Module 4. Advanced Morphology and Digital Herbarium 12 hrs

- and TEM in Angiosperm Taxonomy: Pollen ultrastructure, trichomes, stomata, seed phology, vascular patterns.

 jital Herbarium Development: Imaging standards, metadata curation, software
- gital Herbarium Development: Imaging standards, metadata curation, software s (Symbiota, JSTOR Plants), online access.
- 4.3. Morphological Character Coding for Phylogenetics: Quantitative and qualitative characters for cladistic analysis.

4.4. Integrative Taxonomy: Combining SEM/TEM, molecular, and digital herbarium data for ospecies delimitation and identification.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

Collection of more original papers and reading on the use of molecular data in angiosperm esystematics.

Practical 10 Hrs

- 10. Revisiting the controversial genera for morphological characters
- 11. Preparation of herbaria of controversial taxa
- 10. Revisiting the controversial gene
 11. Preparation of herbaria of contro
 12. Exhibition of herbaria and live pl
 enthusiasm
 13. Searching for the varying sequen
 14. Searching for co-evolution relate
 15. Visit Symbiota and JSTORplants
 suggested Assignment Topics- Theory 12. Exhibition of herbaria and live plant of controversy to the juniors to create a taxonomic
 - 13. Searching for the varying sequences in databases.
 - 14. Searching for co-evolution related data in molecular databases
 - 15. Visit Symbiota and JSTORplants platforms.

- 5. Protocol for analysing pollen under SEM and TEM
- Various microscopic techniques used in taxonomy
- Microscopic features relevant in Angiosperm taxonomy

- 3. Palynology of controversial genera for comparison
- 5. Protocol for analysing pollen under
 6. Various microscopic techniques use
 7. Microscopic features relevant in Ar

 Suggested Assignment Topics- Practical
 3. Palynology of controversial genera:
 4. Structural elucidation of various pro 4. Structural elucidation of various proteins in the controversial genera

d b	Sl. No	Title/Author/Publishers of the Book specific to the module
OVe	1	APG IV. (2016). An update of the Angiosperm Phylogeny Group classification. <i>Botanical</i>
ppro		Journal of the Linnean Society, 181(1), 1–20.
. Ag	2	Bentham, G., & Hooker, J. D. (1862–1883). Genera Plantarum (Vols. 1–3). London: Reeve
024		& Co.
0/2	3	Chase, M. W., & Reveal, J. L. (2009). A phylogenetic classification of the land plants.
1060/	3	<i>Taxon</i> , 58(3), 591–601.
3/2,	4	Cronquist, A. (1981). An integrated system of classification of flowering plants. New York:
Ö	7	Columbia University Press.
ΆĒ	5	Davis, P. H., & Heywood, V. H. (1963). Principles of angiosperm taxonomy. Edinburgh:
AC	3	Oliver & Boyd.
C	6	Engler, A., & Prantl, K. (1887–1915). Die Natürlichen Pflanzenfamilien. Leipzig:
SAI		Engelmann.
) A	7	Hutchinson, J. (1973). <i>The families of flowering plants</i> (3rd ed.). Oxford: Clarendon Press.
File	8	Judd, W. S., Campbell, C. S., Kellogg, E. A., Stevens, P. F., & Donoghue, M. J. (2016).
ō	0	Plant systematics: A phylogenetic approach (4th ed.). Sunderland, MA: Sinauer Associates.
der	9	Simpson, M. G. (2019). <i>Plant systematics</i> (3rd ed.). Academic Press.
Ö	10	Takhtajan, A. (1997). Diversity and classification of flowering plants. New York: Columbia
sity	10	University Press.
/eľ	1 1	Chase, M. W., Fay, M. F., & Savolainen, V. (2000). Higher-level classification in the
먌		Angiosperms. American Journal of Botany, 87(12), 1759–1776.
筹		Cantino, P. D., Harley, R. M., & Wagstaff, S. J. (1992). Relationships within the Lamiaceae
200		and Verbenaceae. Annals of the Missouri Botanical Garden, 79(2), 361–379.
ر ا	13	Scotland, R. W., Olmstead, R. G., & Bennett, J. R. (2003). Phylogeny reconstruction: The
	1.5	role of morphology. Systematic Biology, 52(4), 539–548.

9	14	Soltis, D. E., Soltis, P. S., Endress, P. K., & Chase, M. W. (2005). <i>Phylogeny and evolution of angiosperms</i> . Sunderland, MA: Sinauer Associates.
M - Page 17	15	Stevens, P. F. (2001 onward). Angiosperm Phylogeny Website, version 14, July 2017. Missouri Botanical Garden. http://www.mobot.org/MOBOT/research/APweb/
	16	Thorne, R. F. (1992). Classification and geography of the flowering plants. <i>Botanical Review</i> , 58(3), 225–348.
4:56 P	17	Wurdack, K. J., & Davis, C. C. (2009). Malpighiales phylogeny: Plastid and nuclear data integration. <i>American Journal of Botany</i> , 96(11), 2010–2021.
ec-2025 C	18	Olmstead, R. G., dePamphilis, C. W., Wolfe, A. D., Young, N. D., Elisons, W. J., & Reeves, P. A. (2001). Disintegration of the Scrophulariaceae. <i>American Journal of Botany</i> , 88(2), 348–361.
n 19-D	19	Chase, M. W., & Hills, H. H. (1991). Silica gel: An ideal material for field preservation of leaf samples for DNA studies. <i>Taxon</i> , 40(2), 215–220.
AR (ACADEMIC) or	20	Fay, M. F., Swensen, S. M., & Chase, M. W. (1997). rbcL sequence data for angiosperms. <i>Annals of the Missouri Botanical Garden, 84</i> (1), 1–49.*
	21	CBOL Plant Working Group. (2009). A DNA barcode for land plants. <i>Proceedings of the National Academy of Sciences</i> , 106(31), 12794–12797.
	22	Hollingsworth, P. M., Forrest, L. L., Spouge, J. L., Hajibabaei, M., Ratnasingham, S., & van der Bank, M. (2009). A DNA barcode for land plants. <i>PNAS</i> , <i>106</i> (31), 12794–12797.
SISTR	23	Hebert, P. D. N., Cywinska, A., & Ball, S. L. (2003). Biological identifications through DNA barcodes. <i>Proceedings of the Royal Society B</i> , 270(1512), 313–321.
Y REC	24	Kress, W. J., & Erickson, D. L. (2007). A two-locus global DNA barcode for land plants: rbcL and matK. <i>PLoS ONE</i> , <i>2</i> (6), e508.
AD C3/21060/2024 Approved by DEPUTY REGISTRAR (ACADEMIC) on 19-Dec-2025 04:56 PM - Page 176	25	Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. <i>Phytochemical Bulletin</i> , 19(1), 11–15.
	26	Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7. <i>Molecular Biology and Evolution</i> , 30(4), 772–780.
	27	Ronquist, F., Teslenko, M., van der Mark, P., et al. (2012). MrBayes 3.2: Efficient Bayesian phylogenetic inference. <i>Systematic Biology</i> , 61(3), 539–542.
	28	Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis. <i>Bioinformatics</i> , 30(9), 1312–1313.*
60/2	29	Missouri Botanical Garden. (2024). Tropicos Plant Database. https://www.tropicos.org
AD C3/210(30	International Association for Plant Taxonomy (IAPT). (2018). <i>International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code)</i> . https://www.iapt-taxon.org/nomen/main.php

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Online bioinformatics databases	demonstrations and hands on
	experiences

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION					
Hands-on experiments	> Lecturing					
Collaborative learning-Group	> ICT					
discussion	Practical sessions with					
→ Online bioinformatics databases	demonstrations and hands on					
ď	experiences					
ASSESSMENT RUBRICS						
		Marks				
End Semester Evaluation ESE		70				
University Examination		70				
nuous Comprehensive Assessment	CCA	30				
Examinations (multiple choice, true and critical thinking questions)	ue-false, fill-in-the-blank, matching, short answer	10				
 Writing assignment 						

Reports/ presentations/ demonstrations by the students	5
• Internal Practical Examination/ exhibition	10

Sample Questions to test Outcomes. 2 Marks Question (Understanding)

- Marks Questions (Applying and Analyzing):
- Marks Questions (Evaluating and Creating):
- 34 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course equips learners with advanced taxonomic, molecular, and data management skills applicable in biodiversity research, molecular taxonomy laboratories, botanical gardens, herbaria, and conservation genetics programs.

35	Plant Micr	KU8DSEPLS410		
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4	

- 5. Knowledge in Biology at 101-199 level
- 6. Ability to write examination in English

Course Ou	Course Outcomes						
CO1	Explain the principles and procedures of various microtechniques used in botany.						
CO2	Prepare high-quality permanent and temporary slides of plant materials.						
CO3	Operate and maintain compound, phase contrast, fluorescence, and electron microscopes.						
CO4	Apply appropriate staining techniques to distinguish plant cell and tissue structures.						
CO5	Integrate modern microscopic imaging and digital analysis tools in botanical investigations						

Mapping of Course Outcomes to PSOs/Pos

KAR	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
2CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
ECO2			$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
5CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	\checkmark	
CO5									V	V	V	V

Course Description

This course provides a hands-on and theoretical understanding of the preparation, sectioning, staining, and microscopic analysis of plant tissues—from algae to angiosperms—using both traditional and modern microtechniques.

- First module introduces the fundamentals of microscopy and specimen preparation, establishing a conceptual foundation for microscopic analysis in botany.
- Second module is dealing with sample preservation and sectioning methods crucial for anatomical and cytological studies of plant tissues.
- Third module explores differential staining procedures that reveal structural and functional details across algal, fungal, bryophytic, pteridophytic, gymnospermic, and angiospermic tissues.
- The final module integrates modern microscopy and imaging technologies with traditional microtechnique to support advanced botanical research..

This course will provide you opportunities to,

- 1. To provide a conceptual and practical understanding of microtechnique and its significance in plant studies.
- 2. To train students in the preparation of plant specimens using modern fixation, dehydration, embedding, and <u>estioning</u> methods.
 -) familiarize students with various types of light and electron microscopes and their operational principles.
 - impart skills in differential staining techniques across plant groups—from lower to higher plants.
 - enhance competency in modern microscopic imaging, analysis, and interpretation for research and industry applications.

Credit			Teaching H	[ours		Assessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
Bad -	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module 1: Introduction to Microtechnique and Microscopy (12 Hours)

- \$1.1.History, scope, and importance of microtechnique in plant research.
- 21.2. Principles, components, and maintenance of different types of microscopes (light, phase contrast, fluorescence, confocal, SEM, TEM).
- 1.3.Resolution, magnification, contrast, and digital imaging systems.
- 1.4.Preparation and mounting of temporary slides; safety and laboratory protocols.

Module 2: Fixation, Dehydration, Embedding, and Sectioning Techniques (10 Hours)

- 2.1. Fixatives: types, preparation, and mechanism of fixation (FAA, Carnoy's, formalin-based fixatives).
- \$2.2.Dehydration and clearing agents: alcohol series, xylene, DMP, etc.
- 2.3. Embedding media and techniques: paraffin wax, resin, and cryoembedding.
- 2.4. Microtome techniques: rotary, sliding, sledge, ultramicrotome—principles and operation

Module 3: Staining Techniques in Lower to Higher Plants (14 Hours)

- 3.1. Staining principles: single, double, and multiple stains; mordants and differentiators.
- 23.2. Staining of lower plants: algal (aniline blue, safranin), fungal (cotton blue, lactophenol), bryophytes.
- 3.3.Staining of vascular plants: safranin–fast green, hematoxylin–eosin, toluidine blue O, PAS reaction.
- 3.4.Cytochemical and histochemical localization: lignin, suberin, starch, proteins, and nucleic acids..

Module 4. Modern Microtechnique and Digital Imaging in Botany (12 Hours)

- 4.1. Confocal and fluorescence microscopy in plant cell imaging.
- 4.2.Scanning and transmission electron microscopy: sample preparation and image interpretation.
- 4.3. Digital image processing, 3D reconstruction, and quantitative analysis of tissues.
- 4.4. Applications in taxonomy, physiology, plant pathology, and biotechnology.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Practical 12 Hrs

- 1. Study of the parts, principles, and operation of different microscopes (compound, phase contrast, stereo).
- 2. Preparation and mounting of temporary slides of algal and fungal specimens.
- 3. Preparation and use of common botanical fixatives (FAA, Carnoy's, Formalin).
- 4. Dehydration and clearing of plant tissues using graded alcohol and clearing agents.
- 5. Paraffin embedding and preparation of tissue blocks for microtomy.
- 6. Operation of rotary and sliding microtomes and preparation of thin tissue sections.
- 7. Staining of lower plants algae, fungi, and bryophytes using specific stains (aniline lue, cotton blue, safranin).
- Differential staining of higher plant tissues (safranin–fast green, toluidine blue, etc.).

 You you will you will be a staining of higher plant tissues (safranin–fast green, toluidine blue, etc.).

 You will be a staining of higher plant tissues (safranin–fast green, toluidine blue, etc.).

 The provided Higher plant tissues (safranin–fast green, toluidine blue, etc.).

 The provided Higher plant tissues (safranin–fast green, toluidine blue, etc.).

 The provided Higher plant tissues (safranin–fast green, toluidine blue, etc.).
- 11. Observation of plant cell structures using fluorescence microscopy.
- 12. Demonstration of confocal laser scanning microscopy for plant tissue imaging.

- 13. Demonstration of scanning electron microscopy (SEM) for plant surface studies.
- 14. Demonstration of transmission electron microscopy (TEM) for cellular ultrastructure.
- 14. Demonstration of scanning electron
 14. Demonstration of transmission electron
 15. Digital image capture and process
 preparation of histological reports

 Suggested Assignment Topics- Theory

 1. Protocols for various specialised structure
 2. Pathogen identification using specifical
 1. Whole mounts of algal filaments
 2. Spore germination of bryophyte /pte
 3. Palynology 15. Digital image capture and processing using microscopy software (e.g., ImageJ) and

- Protocols for various specialised structures such as pollen, spores, etc
- 2. Pathogen identification using specific stains

- Spore germination of bryophyte /pteridophytes

) or	Sl. No	Title/Author/Publishers of the Book specific to the module
MIC	1	Bary, A., & Smith, J. (2019). Plant Microtechnique: Principles and Practices. Springer.
SADE	2	Berlyn, G. P., & Miksche, J. P. (1976). Botanical Microtechnique and Cytochemistry. Iowa State University Press.
IR (AC	3	Bozzola, J. J., & Russell, L. D. (1999). Electron Microscopy: Principles and Techniques for Biologists. Jones & Bartlett.
REGISTRAR (ACADEMIC)	4	Brown, R. C., & Lemmon, B. E. (2013). Light and Electron Microscopy of Plant Cells. Academic Press.
	5	Conn, H. J. (1961). Biological Stains: A Handbook on the Nature and Uses of the Dyes Employed in the Biological Laboratory. Williams & Wilkins.
Approved by DEPUTY	6	Dey, P. (2018). Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Springer.
DE OC	7	Erasmus, D. J. (2020). Histological Techniques for Plant Tissues. Cambridge University Press.
ed k	8	Hall, J. L. (1978). Electron Microscopy and Cytochemistry of Plant Cells. Elsevier.
rove	9	Jensen, W. A. (1962). Botanical Histochemistry: Principles and Practice. W. H. Freeman.
App	10	Johansen, D. A. (1940). Plant Microtechnique. McGraw-Hill.
	11	Kraus, J. E., & Arduin, M. (1997). Manual Básico de Métodos em Morfologia Vegetal. EDUR.
60/	12	Lee, J. W., & Lim, C. (2021). Digital Microscopy in Life Sciences. CRC Press.
C3/21060/2024	13	O'Brien, T. P., & McCully, M. E. (1981). The Study of Plant Structure: Principles and Selected Methods. Termarcarphi Pty Ltd.
	14	Pathan, A. K., Bond, J., & Gaskin, R. E. (2008). Sample preparation for SEM of plant surfaces. Micron, 39(8), 1049–1061.
;/AC	15	Ruzin, S. E. (1999). Plant Microtechnique and Microscopy. Oxford University Press.
D	16	Sass, J. E. (1958). Botanical Microtechnique. Iowa State University Press.
Order of File ACAD C/ACAD	17	Steer, M. W. (1981). Understanding Cell Structure: A Practical Guide to the Light Microscope. Cambridge University Press.
File	18	Watanabe, M. (2016). Advanced Fluorescence Microscopy for Plant Science. Springer.
der of	19	Yeung, E. C., & Stasolla, C. (2017). Plant Microtechniques and Protocols. Springer Protocols.
Ö	20	Zimmerman, U. (2018). Modern Microscopy Techniques in Plant Biology. Elsevier.

4 TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
E31457 v. 123, 1445	demonstrations and hands on
	experiences

70 70
70
30
10
5
5
10
-

Employability for the Course / Programme

Employability for the Course / Programme
This course equips students with essential laboratory and analytical skills relevant to the students with essential laboratory and research laboratories.

By the Course of Fig. 1 and 1 an This course equips students with essential laboratory and analytical skills relevant to careers in plant histology, taxonomy,

36	Nanobiot	Nanobiotechnology			
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4		

- 7. Knowledge in Biology at 101-199 level
- 8. Ability to write examination in English

Course O	Course Outcomes							
CO1	Explain the basic principles, terminology, and scope of nanobiotechnology.							
CO2	Identify naturally occurring nanoparticles and distinguish nanoscale features from bulk materials.							
CO3	Describe various physical, chemical, and biological synthesis methods for nanoparticles.							
CO4	Demonstrate understanding of nanobiotechnological applications in plant systems and environmental sustainability.							
CO5	Apply laboratory skills for green nanoparticle synthesis, characterization, and basic evaluation of biological activity.							

Mapping of Course Outcomes to PSOs/Pos

(EGI	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
ÇCO2			$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$						
Е соз							$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark		
≥CO4								\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	
CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

Nanobiotechnology is an emerging interdisciplinary field that merges nanoscience with biological systems to explore and manipulate materials at the nanoscale.

- First module introduces the foundation and evolution of nanoscience, emphasizing its relevance in plant and biological systems.
- Next module focuses on the principles and methods of nanoparticle synthesis, with an emphasis on eco-friendly and biological approaches.
- Third module explores how nanobiotechnology can revolutionize various branches of botany, from plant growth to environmental applications.
- The final module examines nanobiosensors, their applications, and the biosafety regulations governing nanomaterial use.

This course provides a foundation in the principles, synthesis, and applications of nanomaterials in biological contexts, emphasizing green synthesis, biosafety, and environmental implications.

Course Objectives:

- 1. To introduce the fundamental concepts of nanoscience and nanotechnology with relevance to plant systems.
- explore the natural occurrence and synthesis methods of nanoparticles.
 - provide understanding of the physicochemical and biological properties of nanoparticles.
 - familiarize students with the applications of nanobiotechnology in agriculture, environment, and plant iences.
- 5. To develop awareness of biosafety, ethics, and environmental implications of nanomaterial use.

\sim	
(,)	
\sim	

© Credit			Teaching H	[ours	Assessment			
L/T	Γ P/I Total		L/T/P	Total	CCA	ESE	Total	
Wd 99	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100	

Module 1: Introduction and Historical Perspective of Nanobiotechnology (12 Hours)

- 1.1. Historical development of nanoscience and nanobiotechnology; key milestones.
- 1.2.Definition, scope, and interdisciplinary nature of nanotechnology and nanobiotechnology.
- 1.3. Unique features and properties of nanoparticles; changes in physical and chemical characteristics from bulk to nano scale.
- 1.4. Naturally occurring nanoparticles in plants, soils, and microorganisms (e.g., diatoms, magnetotactic bacteria, pollen structures).

Module 2: Synthesis and Characterization of Nanoparticles (10 Hours)

- 2.1. Top-down and bottom-up approaches; overview of synthesis methods.
- 2.2.Physical and chemical methods: laser ablation, sol-gel, co-precipitation, and microemulsion techniques.
- 2.3. Green synthesis: nanoparticle production using plant extracts, algae, fungi, and bacteria.
- 2.4. Characterization techniques: UV-Vis spectroscopy, SEM, TEM, XRD, FTIR, and DLS (qualitative overview).

Module 3: Applications of Nanobiotechnology in Plant Science

- 3.1. Nanoparticles in seed germination, growth enhancement, and stress tolerance.
- 3.2. Nanofertilizers and nanopesticides: controlled release and sustainable agriculture.
- 3.3.Nanobiotechnology in plant tissue culture, genetic transformation, and molecular diagnostics.
- 3.4.Environmental applications: phytoremediation, water purification, and carbon sequestration using nanomaterials.

Module 4. Nanobiosensors, Safety, and Ethical Issues (12 Hours)

- 4.1. Principles and design of nanobiosensors for detecting toxins, pathogens, and environmental pollutants.
- 4.2. Applications of nanobiosensors in agriculture, food quality monitoring, and plant disease diagnostics.
- 4.3. Safety, toxicity, and ethical concerns of nanoparticles in biological systems.
- 4.4. National and international guidelines for handling, storage, and disposal of nanomaterials.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and coutcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

Nanobiotechnology, nanomedicine and nanosensors for human medical care

⊱Practical 10 Hrs

- 1. Nanoparticle isolation
- 2. Characterisation of nano particles
- unscreen and UV protection using UV papers/beads

1 Assignment Topics- Theory

ses of nanotechnology in medicine

- 2. Nanotechnology in cosmetics
- 3. Drug targeted delivery

4. Site specific druge delivery Suggested Assignment Topics- Practical 1. Nanoparticle isolation from leaves

PM-	Sl. No	Title/Author/Publishers of the Book specific to the module
9 9	51. 110	Bhattacharya, D., Gupta, R. K. (2005). <i>Nanotechnology and Potential of Microorganisms</i> .
4:5	1	Critical Reviews in Biotechnology, 25(4), 199–204.
5 0	2	Ratner, M. A., & Ratner, D. (2003). Nanotechnology: A Gentle Introduction to the Next
202	2	Big Idea. Prentice Hall.
ec-,	3	Goodsell, D. S. (2004). Bionanotechnology: Lessons from Nature. Wiley-Liss.
9-D	4	Ramsden, J. J. (2016). Nanotechnology: An Introduction. Elsevier.
on 19	5	Buzea, C., Pacheco, I. I., & Robbie, K. (2007). <i>Nanomaterials and Nanoparticles: Sources and Toxicity</i> . Biointerphases, 2(4), MR17–MR71.
REGISTRAR (ACADEMIC) on 19-Dec-2025 04:56	6	Daniel, M. C., & Astruc, D. (2004). <i>Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology.</i> Chemical Reviews, 104(1), 293–346.
R (AC)	7	Nel, A., et al. (2006). <i>Toxic Potential of Materials at the Nanolevel</i> . Science, 311(5761), 622–627.
STRAF	8	Singh, A., & Dhawan, A. (2019). <i>Nanotechnology in Agriculture and Food Production: Opportunities and Challenges.</i> CABI Publishing.
SIS.	9	Rai, M., & Duran, N. (Eds.). (2011). Metal Nanoparticles in Microbiology. Springer.
	10	Roco, M. C., & Bainbridge, W. S. (2005). Societal Implications of Nanoscience and Nanotechnology. Springer.
5	11	Jain, K. K. (2012). The Handbook of Nanomedicine. Humana Press.
ed by DEPUTY	12	Mukherjee, P., et al. (2001). Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis. Nano Letters, 1(10), 515–519.
3/21060/2024 Approved by	13	Sharma, V. K., Yngard, R. A., & Lin, Y. (2009). <i>Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities</i> . Advances in Colloid and Interface Science, 145(1–2), 83–96.
/2024	14	Sarkar, A., & Das, P. (2015). <i>Green Synthesis of Metal Nanoparticles Using Plant Extracts: A Review.</i> Environmental Chemistry Letters, 13, 315–328.
21060	15	Goyal, A. K., & Tripathi, S. K. (2014). <i>Nanobiotechnology for Plant Protection and Productivity</i> . Biotechnology Letters, 36(4), 607–620.
CAD C	16	Ghormade, V., Deshpande, M. V., & Paknikar, K. M. (2011). <i>Perspectives for Nanobiotechnology Enabled Protection and Nutrition of Plants</i> . Biotechnology Advances, 29(6), 792–803.
) C/A	17	Kah, M., et al. (2018). <i>Nanopesticides and Nanofertilizers: Emerging Contaminants or Opportunities for Risk Mitigation?</i> Nature Nanotechnology, 13, 677–684.
ersity Order of File ACAD C/A	18	Tiwari, D. K., Dasgupta-Schubert, N., Villaseñor-Cendejas, L. M., et al. (2014). <i>Interaction of Nanoparticles with Seeds and Plants: A Review.</i> Environmental Chemistry Letters, 12(2), 229–241.
of F	19	Jain, K. K. (2013). Nanobiotechnology: Applications, Ethics and Governance. Springer.
Order	20	Dey, P., & Mukherjee, A. (2020). Nanotechnology in Plant Tissue Culture and Genetic Engineering. In: Plant Nanobionics: Principles and Applications. Elsevier.
Jersity (21 	Sastry, R. K., Rao, N. H., & Ilyas, S. M. (2010). <i>Integrating Nanotechnology into Agri-</i> Food Systems Research in India: A Conceptual Framework. Technological Forecasting and Social Change, 77(4), 639–648.
		Lynch, I., & Dawson, K. A. (2008). <i>Protein–Nanoparticle Interactions</i> . Nano Today, 3(1–2), 40–47.
		ISO/TR 13121:2011. <i>Nanotechnologies</i> — <i>Nanomaterial Risk Evaluation</i> . International Organization for Standardization.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	LecturingICT
Collaborative learning-Group discussion	Practical sessions with
	demonstrations and hands on experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	70
University Examination	70
Continuous Comprehensive Assessment CCA	30
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	5
Internal Practical Examination	10

Sample Questions to test Outcomes.

Marks Question (Understanding)

Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating):

34 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course equips students with a strong interdisciplinary foundation combining nanoscience, biology, chemistry, and plant Sciences, preparing them for careers environment, and materials science. sciences, preparing them for careers and research opportunities in the rapidly evolving fields of biotechnology, agriculture,

 \mathbb{P}

37	Climate change and	Climate change and Disaster Management				
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4			

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course Ou	Course Outcomes							
CO1	Explain the scientific basis and evidence for climate change and variability.							
CO2	Assess the impacts of climate change on ecosystems, agriculture, and water resources.							
CO3	Understands types, causes, and impacts of natural and anthropogenic disasters.							
CO4	Evaluate the role of local, national, and international institutions in managing climate-induced disasters.							
CO5	Formulate adaptation and mitigation strategies relevant to Kerala's socio-ecological context.							

Mapping of Course Outcomes to PSOs/Pos

KEGI	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
Eco2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
∏ соз							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
≧CO4								$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	
©CO5									\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

CO5							V		$\sqrt{}$	1
_				<u> </u>						
C3/21060/2024 Approv		Course Description								
/20%	This is an introdu	This is an introductory biology course designed for all								
090	• First mod	dule is dealing w	rith							
/21(• .	J								
C3	This course will	provide you opp	ortunities	to,						
Q ∉ ourse	Objectives:									
	To introduce the									
2. 3. 4. 5. 5. 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	To familiarize stuand biodiversity.	idents with the r	egional ar	nd global ii	npacts o	f clima	te change	e on ecos	ystems, a	ıgricı
⊕ 3.	To impart fundan	nental knowledg	e of disas	ter types, c	auses, ar	nd man	agement	strategies	S.	
₽ 4.	To develop aware	eness of climate	resilience	e, adaptatio	on, and n	nitigati	on appro	aches rel	evant to	Kera
ler (India.									
S 5.	To understand in	stitutional mech	anisms, p	olicy fram	eworks,	and co	mmunity	-based d	isaster m	anag
sity	strategies.									
ers ers										
■発数的設備	X□ Credit	7	[eaching]	Hours				Assessm	ent	

- 1. To introduce the scientific principles underlying climate change and global environmental processes.
- 2. To familiarize students with the regional and global impacts of climate change on ecosystems, agriculture, and biodiversity.
- To impart fundamental knowledge of disaster types, causes, and management strategies.
- 4. To develop awareness of climate resilience, adaptation, and mitigation approaches relevant to Kerala and
- 5. To understand institutional mechanisms, policy frameworks, and community-based disaster management

Page Credit		Teaching H	lours	Assessment			
	P/I	Total	L/T/P	Total	CCA	ESE	Total
自然是是是 4	0	4	4+ 0+ 0 (60+ 0 + 0)	4	30	70	100

Module I: Fundamentals of Climate Change (12 hours)

- 1.1 Introduction to Climate and Weather: Elements and factors controlling climate; difference between climate and weather; climate classification (Köppen's system).
- 1.2 Climate Change Concepts and Causes: Definition, natural and anthropogenic causes; greenhouse effect, global warming, and feedback mechanisms.
- 21.3 Evidence and Indicators of Climate Change: Temperature trends, sea-level rise, glacial retreat, extreme weather events; data from IPCC reports.
- ol.4 Climate Systems and Global Circulation: Atmosphere—ocean interactions, El Niño—Southern Oscillation (ENSO), monsoon variability, and their influence on Indian climate.

Module 2: Impacts, Challenges, and Mitigation of Climate Change (12 hours)

- 2.1 Impacts on Ecosystems and Agriculture: Shifts in vegetation zones, phenological changes, soil degradation, and crop productivity; impacts on tropical vegetable systems of Kerala.
- 2.2 Water and Carbon Cycle Alterations: Evapotranspiration, precipitation patterns, and carbon sequestration changes under warming scenarios.
- 2.3 Socio-economic and Health Impacts: Food security, migration, vector-borne diseases, livelihood challenges, and gender dimensions.
- 2.4 Climate Mitigation and Adaptation: Renewable energy, afforestation, carbon capture, sustainable agriculture; Kerala Climate Change Action Plan; role of local self-governments.

Module 3: Concepts and Types of Disasters (12 hours)

- 23.1 Introduction to Disaster Management: Definition, hazard–vulnerability–risk concepts, and disaster management cycle.
- 3.2 Types of Disasters: Natural: Floods, droughts, cyclones, landslides, coastal erosion, earthquakes. Human-induced: Industrial accidents, deforestation, epidemics, pollution, dam failures.
- 3.3 Disaster Risk Assessment: Hazard mapping, vulnerability analysis, early warning systems, and GIS applications.
- 3.4 Disaster Scenarios in Kerala: Case studies 2018 Kerala floods, landslides in Wayanad and Idukki, coastal erosion and sea-level rise in Malabar coast.

Module 4: Strategies, Policies, and Institutions in Disaster Management (12 hours)

- 4.1 Disaster Preparedness and Response: Community-based disaster management (CBDM), early warning systems, mock drills, and emergency response planning.
- 4.2 Disaster Recovery and Rehabilitation: Post-disaster reconstruction, livelihood restoration, psychological and social rehabilitation.
- 34.3 Institutional Frameworks: NDMA, SDMA (Kerala State Disaster Management Authority), NDRF, UNDRR, IPCC, and international collaborations.
- 4.4 Sustainability and Climate Resilience: Integrated approaches linking climate adaptation with disaster management; ecosystem-based disaster risk reduction (Eco-DRR); role of education and media in awareness building.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 12 Hrs

The Economic Dimensions of Climate Change: Climate change as a market failure: externalities, public goods, and the tragedy of the commons. Cost—benefit analysis of mitigation tation policies. Economic valuation of ecosystem services and climate damages (Stern IPCC reports).

Economy of Climate Policy: Power structures and political interests shaping climate

Economy of Climate Policy: Power structures and political interests shaping climate tole of fossil fuel lobbies, green movements, and international NGOs. Climate justice, equity, and environmental ethics. Climate diplomacy and geopolitics — China, India, and U.S. positions. Global South perspectives: adaptation funding, climate refugees, and developmental

priorities

Contemporary Issues and Policy Instruments: Carbon markets, taxes, and offset mechanisms (case study: Carbon pricing in the EU, India's renewable energy subsidies). Role Fof science, technology, and innovation in decarbonization. Emerging issues: Loss and damage debates, biodiversity–climate linkages, climate misinformation.

Suggested Assignment Topics- Theory

- 1. Climate change different views amo
 2. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change different views amo
 3. Difference of opinion on Climate change difference of opinion opinion on Climate change difference of opinion opinion opinion opinion opinion opinion op 1. Climate change different views among scientists
 - 2. Difference of opinion on Climate change among governments

- 1. Internship in NGOs/ Institutes working on Climate change

3 S1	l. No	Title/Author/Publishers of the Book specific to the module
EMIC	1	Bryant, E. (2005). Natural Hazards. Cambridge University Press.
DE	2	Cutter, S. L. (2012). Hazards, Vulnerability and Environmental Justice. Earthscan.
(ACA	3	Dash, S. K. (2012). Climate Change: An Indian Perspective. Cambridge University Press.
STRAF	4	Gupta, A. K., & Nair, S. S. (2011). Environmental Hazards: Assessment and Mitigation. Narosa Publishing House.
' REGI	5	Gupta, J., & van der Grijp, N. (2010). <i>Mainstreaming climate change in development cooperation</i> . Cambridge University Press.
EPUTY	6	IPCC (2021). Sixth Assessment Report: Climate Change 2021 – The Physical Science Basis. Cambridge University Press.
by D	7	IPCC. (2023). Sixth Assessment Report (AR6): Synthesis Report. Geneva: Intergovernmental Panel on Climate Change.
Approved	8	Keohane, R. O., & Victor, D. G. (2016). Cooperation and discord in global climate policy. <i>Nature Climate Change</i> , 6(6), 570–575.
	9	Klein, N. (2014). <i>This changes everything: Capitalism vs. the climate.</i> Simon & Schuster.
1060/2024	10	Ministry of Environment, Forest and Climate Change (MoEFCC). (2018). State Action Plan on Climate Change – Kerala. Government of Kerala.
3/2	11	NDMA (2019). National Disaster Management Plan. Government of India.
CAD	12	Newell, P., & Paterson, M. (2010). <i>Climate capitalism: Global warming and the transformation of the global economy</i> . Cambridge University Press.
AD C/A	13	Nordhaus, W. D. (2013). <i>The climate casino: Risk, uncertainty, and economics for a warming world.</i> Yale University Press.
File AC	14	Ostrom, E. (2009). A polycentric approach for coping with climate change. World Bank Policy Research Paper No. 5095.
of F	15	Paterson, M. (2021). Climate politics: Concepts and debates. Polity Press.
D	16	Pelling, M. (2011). Adaptation to Climate Change: From Resilience to Transformation. Routledge.
ţ.	17	Piketty, T., & Chancel, L. (2015). Carbon and inequality: From Kyoto to Paris. <i>Paris School of Economics Working Paper Series</i> .
		Ramanathan, V. (2019). Climate Change and the Global Energy Challenge. Oxford University Press.
		Sachs, J. D. (2015). <i>The age of sustainable development</i> . Columbia University Press.
,	20	Singh, J. S., & Gupta, S. R. (2021). Ecology, Environment and Resource

		Conservation. S. Chand Publications.
89	21	Singh, R. B., & Mal, S. (2014). Environmental Change and Sustainability. Springer.
je 1	22	Somanathan, E. (2020). The economics of India's climate policy. <i>Indian Economic</i>
Pa		<i>Review, 55</i> (2), 267–292.
-	23	Stern, N. (2007). The economics of climate change: The Stern review. Cambridge
		University Press.
1:56	24	UNDP. (2021). Human Development Report 2021–22: Uncertain times, unsettled
0	4	lives. United Nations Development Programme.
202	25	UNFCCC. (2015). The Paris Agreement. United Nations Framework Convention on
-0 -0	23	Climate Change.
-De	26	World Bank. (2022). State and trends of carbon pricing 2022. Washington, D.C.:
15		World Bank Publications.
=		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
	demonstrations and hands on
	experiences

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION	
> Hands-on experiments	> Lecturing	
Collaborative learning-Group	> ICT	
discussion	Practical sessions with demonstrations and hands on	
	experiences	
	experiences	
ASSESSMENT RUBRICS		Mark
End Semester Evaluation ESE		70
 University Examination 		70
Continuous Comprehensive Assessment	CCA	30
• Examinations (multiple choice, true and critical thinking questions)	ne-false, fill-in-the-blank, matching, short answer	10
Writing assignment		5
Reports/ presentations/ demonstrati	ons by the students	5
 Debate and/or internship 		10
		10
End Semester Evaluation ESE		10

38		Environmental Impact Assessment and Conservation Management			
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4		

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course Outcomes					
CO1	Conduct screening, scoping, and baseline environmental assessments.				
CO2	Apply analytical tools and models for predicting and mitigating environmental impacts.				
CO3	Critically evaluate EIA reports and recommend appropriate mitigation measures.				
CO4	Incorporate biodiversity and conservation principles into environmental management plans.				
CO5	Use GIS and remote sensing in environmental monitoring and reporting.				

Mapping of Course Outcomes to PSOs/Pos

5151	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
_CO2			$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$						
Есоз							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4									$\sqrt{}$	$\sqrt{}$	\checkmark	
≥ CO5									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$

Course Description

This course is suitable for postgraduate or advanced undergraduate environmental science or sustainability studies.

- First module introduces the ecological and policy background essential for understanding Environmental Impact Assessment.
- Second module delves into the procedural and methodological backbone of EIA.
- Third module focuses on applied aspects of EIA across diverse sectors—industry, infrastructure, mining, and power generation.
- Finally, last module connects impact assessment outcomes to practical conservation and management strategies.

This course will emphasize role of EIA as a bridge between science, society, and sustainable

- To understand the scientific and policy basis of Environmental Impact Assessment.
- To develop the ability to apply EIA methodologies in varied development contexts.
- To interpret and evaluate environmental data for decision-making.
 - integrate biodiversity conservation and sustainable management principles into project planning.
 - familiarize students with GIS tools, environmental legislation, and global EIA practices.

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	

4	0 4	4+ 0+ 0 (6+ 0 + 0)	4	30	70	100
---	-----	-----------------------	---	----	----	-----

Module 1: Environment, Sustainability, and the Foundation of EIA (12 hrs)

- 21.1. Environment and Its Components: Definition, structure, and composition of the cenvironment air, water, land, and biota. Ecological hierarchy: species, community, secosystem, landscape levels. Environmental quality indices and ecological carrying capacity. Anthropogenic pressures and environmental degradation trends in India.
- \$1.2. Introduction to Environmental Impact Assessment (EIA): Concept, purpose, and scope of EIA in environmental planning. Historical evolution: NEPA (1970, USA), global adoption, and Indian legal framework. Screening, scoping, and baseline environmental data collection. Linkages with environmental auditing and strategic environmental assessment (SEA).
- \$\frac{1}{2}\$1.3. Sustainable Development and Environmental Policy Integration: Principles and goals of sustainable development. Interrelationship between economy, ecology, and society. Brundtland Report, Agenda 21, SDGs, and national sustainability indicators. Balancing developmental needs with environmental protection trade-offs and ethics.
- 1.4. Environmental Quality and Monitoring Systems. Environmental quality indicators: air, water, soil, and biological parameters. Monitoring techniques in situ sampling, remote essensors, biological indicators. Baseline environmental surveys and environmental data management.

Module 2: EIA Process, Methods, and Public Participation (12 hrs)

- 2.1. EIA Process and Steps: Impact identification, prediction, evaluation, and mitigation.EIA report preparation and Environmental Management Plan (EMP).Environmental clearance process under MoEFCC and State Pollution Control Boards. Post-project monitoring and compliance auditing.
- 2.2.EIA Methodologies: Comparative review: ad-hoc, checklist, matrix (Leopold's Matrix), coverlay, and network methods. Quantitative approaches: cost-benefit analysis, risk assessment, multicriteria evaluation. Use of modeling in prediction (air dispersion, hydrological and ecological models). Selection criteria for EIA methodology based on project type.
- 2.3.Impact Assessment of Environmental Media: Assessment of impacts on air, water, soil, and biota. Techniques for predicting pollutant dispersion and contamination. Assessing cumulative and synergistic impacts. Environmental risk and health impact assessment.
- 2.4. Public Involvement and Decision Making. Role of stakeholders in the EIA process local communities, NGOs, policymakers. Public hearing procedures under EIA Notification (2006). Access to information, transparency, and the Aarhus Convention principles. Conflict resolution, ethics, and participatory environmental governance.

Module 3: Sectoral Applications, Tools, and Case Studies (12 hrs)

- 3.1. Environmental Impacts of Development Projects: Dams, hydroelectric projects, power plants, transportation networks, and urban expansion. Mining and quarrying land degradation and water pollution case studies. Industrial projects and waste management facilities EIA protocols. Disaster impact assessment and climate resilience considerations.
- Strategies. National Ambient Air and Water Quality Standards (NAAQS, CPCB). Solid and hazardous waste management in EIA context. Integration of pollution control plans with mental management systems (EMS).
- and Remote Sensing Applications in EIA: Use of geospatial tools for mapping and risualization. Satellite data integration for land-use and vegetation change analysis. d buffer analysis, overlay modeling, and hazard zoning. Software and databases: | ArcGIS, QGIS, Bhuvan, Google Earth Engine.
- 3.4. Case Studies and Best Practices: Case study analysis: Mining in Goa, Silent Valley

Hydroelectric Project, Vizhinjam Port Project. Lessons learned from successful and failed EIA simplementations. Role of EIAs in national environmental policy and planning. Comparative study of EIA systems: India, USA, and the EU.

Module 4. Environmental Management, Biodiversity, and Conservation (12 hrs)

- 4.1.Environmental Management Plans (EMPs): EMP formulation, implementation, and monitoring. Mitigation hierarchy: avoidance, minimization, restoration, and compensation. Environmental auditing, ISO 14001 certification, and Environmental Management Systems (EMS). Linking EIA outcomes with Sustainable Development Goals (SDGs).
- 4.2.Biodiversity and Conservation Principles: Concepts and patterns of biodiversity: microbial, splant, soil, and agro-biodiversity. Levels of biodiversity: alpha, beta, gamma diversity. Biodiversity gradients: latitudinal and insular variations. Economic and ecological value of biodiversity in development planning.
- 4.3. Threats to Biodiversity and Policy Frameworks: Habitat loss, fragmentation, invasive species, pollution, and overexploitation. IUCN Red List categories: endangered, threatened, and vulnerable species. National Biodiversity Authority (NBA), Red Data Book, and documentation systems. Legal and ethical aspects of biodiversity protection Biological Diversity Act (2002).
- 4.4. Conservation Methods and Strategies: *In situ* conservation: Biosphere reserves, national parks, sanctuaries, sacred groves. *Ex situ* conservation: botanical gardens, gene banks, seed and tissue culture banks, DNA repositories. Role of indigenous knowledge and community participation. Global conventions: CBD, CITES, Ramsar, and UNESCO MAB program.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and soutcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 12 Hrs

ÈIA and Society: Community Perceptions and Social Outcomes: Influence of EIA on community awareness and participatory decision-making. Role of EIA in conflict resolution between local populations and developers.

EIA and Local Self-Government (LSGA) Involvement: Role of Panchayats, Municipalities, and District Planning Committees in EIA implementation. Decentralized environmental governance under the Kerala Panchayati Raj Act and Biodiversity Management Committees (BMCs). Community-level environmental monitoring, People's Biodiversity Registers (PBRs), and Grama Sabha consultation.

EIA in Industrial and Corporate Decision-Making: Role of EIA in project design, site eselection, and compliance for industries (manufacturing, mining, power, ports, tourism). Integration of EIA with Corporate Environmental Responsibility (CER) and Environmental, Social, and Governance (ESG) frameworks. Economic and operational benefits of proactive EIA adoption — risk mitigation, reduced liability, and brand credibility.

Practical 10 Hrs

- 1. Field visit to newly 'developing area'.
- 2. Collection of reports on EIA studies in different ventures.

Suggested Assignment Topics- Theory

- 1. Examples for modified planning due to EIA recommendations
- 2. Destiny of EIA studies related forests and its boundaries and Mangrove boundaries

Suggested Assignment Topics- Practical

ticipation in LSGA and BMC activities of your locality regarding EIA

•		Title/Author/Publishers of the Book specific to the module
	1	
	2	Arts, J., & Morrison-Saunders, A. (2004). Environmental impact assessment follow-up

ſ		and adaptive management Emilyanyantal Imaget Aggeggment Davigue 24(4) 462 470
~		and adaptive management. Environmental Impact Assessment Review, 24(4), 463–479.
193	3	Canter, L. W. (1996). Environmental impact assessment (2nd ed.). McGraw-Hill.
de	4	Canter, L. W., & Sadler, B. (1997). A tool for better environmental decision-making: A
Page	•	practitioner's guide to EIA. International Association for Impact Assessment.
- 1		Cashmore, M. (2004). The role of science in environmental impact assessment: Process
PM	5	and procedure versus purpose in the development of theory. Environmental Impact
04:56		Assessment Review, 24(4), 403–426.
	6	Central Pollution Control Board (CPCB). (2018). Guidelines for environmental
9-Dec-2025		monitoring and assessment. CPCB, New Delhi.
5-2	7	Clark, B. D., Chapman, K., Bisset, R., & Wathern, P. (1978). Environmental impact
Dec	,	assessment: A review. Allen & Unwin.
19-	8	European Commission. (2017). EIA Directive 2014/52/EU: Guidance on the application
uo	O	of the Environmental Impact Assessment Directive. European Union.
	9	Glasson, J., & Salvador, N. N. B. (2000). EIA in Brazil: A procedures-practice gap.
M	9	Environmental Impact Assessment Review, 20(2), 191–225.
(ACADEMIC)	10	Glasson, J., Therivel, R., & Chadwick, A. (2012). Introduction to environmental impact
CA	10	assessment (4th ed.). Routledge.
	11	International Association for Impact Assessment (IAIA). (2022). Principles of
REGISTRAR	11	environmental impact assessment best practice. IAIA Publications.
STR		Jay, S., Jones, C., Slinn, P., & Wood, C. (2007). Environmental impact assessment:
9	12	Retrospect and prospect. Environmental Impact Assessment Review, 27(4), 287-300.
RE		https://doi.org/10.1016/j.eiar.2006.12.001
\vdash		Lawrence, D. P. (2003). Environmental impact assessment: Practical solutions to
7	13	recurrent problems. Wiley.
Œ	1.4	Ministry of Environment, Forest and Climate Change (MoEFCC). (2006). EIA
by DEPUTY	14	Notification, 2006. Government of India.
	15	MoEFCC. (2020). Draft EIA Notification, 2020. Government of India.
Approved		Morgan, R. K. (2012). Environmental impact assessment: The state of the art. <i>Impact</i>
dd	16	Assessment and Project Appraisal, 30(1), 5–14.
-		https://doi.org/10.1080/14615517.2012.661557
2024	1.7	Morris, P., & Therivel, R. (2009). Methods of environmental impact assessment (3rd
	17	ed.). Routledge.
C3/21060	4.0	Morrison-Saunders, A., Baker, J., & Arts, J. (2003). Lessons from practice: Towards
3/2	18	successful follow-up. Impact Assessment and Project Appraisal, 21(1), 43–56.
		National Environmental Engineering Research Institute (NEERI). (2016).
C/ACAD	19	Environmental impact assessment manual for industrial projects. NEERI, India.
)/A		Noble, B. F. (2015). Introduction to environmental impact assessment: A guide to
	20	principles and practice (3rd ed.). Oxford University Press.
versity Order of File ACAD		Organisation for Economic Co-operation and Development (OECD). (2019). <i>Good</i>
e A	21	practice principles for environmental assessment. OECD Environment Directorate.
Ë		Petts, J. (Ed.). (1999). Handbook of environmental impact assessment (Vols. 1–2).
r of	22	Blackwell Science.
de.		Pope, J., Annandale, D., & Morrison-Saunders, A. (2004). Conceptualising
Ó	23	sustainability assessment. Environmental Impact Assessment Review, 24(6), 595–616.
sity	<u> </u>	Sánchez, L. E., & Gallardo, A. L. C. F. (2005). On the successful implementation of
/er	24	strategic environmental assessment in Brazil. <i>Impact Assessment and Project Appraisal</i> ,
		23(2), 137–146.
ű		Toro, J., Requena, I., Duarte, O., & Zamorano, M. (2010). A qualitative method
器		proposal to improve environmental impact assessment. Environmental Impact
اك	AND THE STATE	Assessment Review, 30(5), 334–342.
ŀ	26	United Nations Development Programme (UNDP). (2019). <i>Integrating environment into</i>
L	20	Cinica radions bevelopment rogramme (Orbit). (2017). Integrating environment into

		development planning: EIA case studies. UNDP Environment and Energy Group.						
e 194		United Nations Environment Programme (UNEP). (2018). Environmental impact						
	27	assessment and strategic environmental assessment: Towards an integrated approach.						
ag		UNEP Division of Technology, Industry and Economics.						
-	28	Wathern, P. (Ed.). (1988). Environmental impact assessment: Theory and practice.						
PM	20	Routledge.						
56	29	Weston, J. (2004). EIA: A critical review. Longman.						
04:	30	Wood, C. (2003). Environmental impact assessment: A comparative review (2nd ed.).						
)25	30	Prentice Hall.						
\sim								

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical sessions with
Field visits	demonstrations and hands on
	experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	70
University Examination	70
Continuous Comprehensive Assessment CCA	30
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	5
Internal Practical Examination	10

Sample Questions to test Outcomes.

Marks Question (Understanding)
Marks Questions (Applying and Analyzing):

Marks Questions (Evaluating and Creating): 44 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

This course equips students for careers in environmental consultancy, policy analysis, sustainability auditing, GIS-based This course equips students for careers in environmental consultancy, policy analysis, sustainability autonivironmental planning, and biodiversity management within governmental, industrial, and NGO sectors.

O VO V D I J O V D J

roved by DEPUTY REGISTRAR (ACA<u>DEMIC) on 19-Dec</u>

39	Structur	al biology	KU8DSEPLS414
DSE	Semester: 8	Hrs/week: 4 Theory	Credits: 4

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course Ou	Course Outcomes								
CO1	Explain the hierarchy and organization of biomolecular structures.								
CO2	Describe key experimental techniques used to determine macromolecular structures.								
CO3	Apply computational tools for structure modeling and functional interpretation.								
CO4	Analyze structural information in the context of biological mechanisms and drug design.								
CO5	Perform basic bioinformatics and sequence-based analyses to support structural investigations.								

Mapping of Course Outcomes to PSOs/Pos

TRA	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	V									
ĽCO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
_CO3							\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$		
2 CO4								\checkmark	~	~	~	
CO5									\checkmark	\checkmark	\checkmark	$\sqrt{}$

Course Description

This course provides an in-depth understanding of the principles, methods, and applications of structural biology.

- First module builds a strong conceptual foundation of biomolecular structures and their biological significance.
- Second module dives into experimental methods used to determine biomolecular structures.
- Third module explores computational approaches to analyze, model, and predict structures.
- Last module helps to apply structural knowledge to understand biological mechanisms and drug design.

Students will explore the architecture and dynamics of biomolecules through experimental and computational methods, with emphasis on how structural knowledge informs function and drug

- To understand the hierarchical organization and physical principles underlying biomolecular structure.
- To gain practical knowledge of experimental and computational methods.
- To develop proficiency in structural data handling and visualization.
- To explore the role of structure in biological regulation, protein engineering, and drug design.
 - of foster an integrative understanding of modern structural biology.

©K≄≭84 Credit			Teaching H	ours	Assessment		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total

4 96	0	4	4+0+0 (6+0+0)	4	30	70	100
------	---	---	------------------	---	----	----	-----

Module 1: Fundamentals of Structural Biology (12 hours)

- 1.1.Levels of Biomolecular Structure: Primary, secondary, tertiary, and quaternary structures. Structure–function relationships in proteins and nucleic acids
- \$1.2.Molecular Interactions and Forces: Hydrogen bonding, hydrophobic interactions, van der @Waals forces, ionic bonds. Protein folding and stability.
- \$1.3.Structural Databases and Visualization: Protein Data Bank (PDB), SCOP, CATH, &UniProt. Tools: PyMOL, Chimera, RCSB PDB viewer
- 1.4.Introduction to Structural Determination Techniques: X-ray crystallography, NMR spectroscopy, cryo-electron microscopy. Overview of hybrid and integrative structural biology

Module 2: Module 2: Experimental Techniques in Structural Biology (12 hours)

- 2.1.X-ray Crystallography: Crystallization, diffraction, data collection, structure refinement.
- 2.2.NMR Spectroscopy: Principles, isotope labeling, structure calculation from NMR data
- 2.3. Cryo-Electron Microscopy (Cryo-EM): Sample preparation, image processing, single-Eparticle analysis
- 2.4.Small-Angle Scattering & Mass Spectrometry: SAXS and WAXS basics. Structural mass espectrometry and cross-linking methods

Module 3: Module 3: Computational Structural Biology (12 hours)

- 3.1. Homology Modeling and Fold Recognition: Template selection, model building, validation
- 53.2.Molecular Docking: Ligand-protein interactions, docking algorithms, AutoDock, HADDOCK
- 3.3.Molecular Dynamics Simulations: Force fields, simulation setup, trajectory analysis
- 3.4.Structure Prediction and AI Methods: AlphaFold and RoseTTAFold. Machine learning in structural prediction.

Module 4: Structural Biology Applications and Frontiers 12 hours

- 4.1. Protein Engineering and Design: Rational and directed evolution approaches
- 4.2.Structural Genomics and Proteomics: Large-scale structure determination efforts
- 4.3.Drug Discovery and Design: Structure-based drug design (SBDD) and virtual screening
- 4.3.Emerging Trends and Integrative Approaches: Cryo-tomography, hybrid modeling, and multi-omics integration.

Module 5. TEACH SPACE 12 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

From Structure to Society: The Impact and Future of Structural Biology: Integration of structural biology with *systems biology*, *synthetic biology*, and *AI-driven life sciences*.

Innovation and Entrepreneurship: Structural biology in biotech startups and pharmaceutical R&D pipelines. Opportunities for patenting protein design, biosensors, and therapeutic targets. Future Directions: Quantum biology and cryo-EM revolution. Integrative modeling and personalized medicine. AI-enhanced protein design (AlphaFold, RoseTTAFold) as disruptors of traditional biology.

1 10 Hrs

oring the PDB Database – retrieving and visualizing protein structures.

- 3. Analyzing Intermolecular Interactions identifying hydrogen bonds and salt bridges
- 4. Homology Modeling using SWISS-MODEL or MODELLER

- 5. Protein-Ligand Docking using AutoDock Vina
- 6. Molecular Dynamics Setup using GROMACS energy minimization and equilibration
- 7. Cryo-EM Map Fitting with Chimera
- 8. NMR Structural Data Interpretation using NMRView or CCPNMR
- 9. Validation of Structural Models using MolProbity
- ₹10. Structure-based Drug Design Workflow virtual screening and hit identification

Suggested Assignment Topics- Theory

- Structural bioinformatics and its uses
- 2. Major structure visualisation tools
- 3. Autodocking tools

Suggested Assignment Topics- Practical 1. Structure prediction using the differ 2. Drug designing

- 1. Structure prediction using the different sequences of the same gene in different species

Sl. No	Title/Author/Publishers of the Book specific to the module							
1	Branden, C., & Tooze, J. (1999). <i>Introduction to protein structure</i> (2nd ed.). Garland Science.							
2	Mount, D. W. (2004). <i>Bioinformatics: Sequence and genome analysis</i> (2nd ed.). Cold Spring Harbor Laboratory Press.							
3	National Center for Biotechnology Information (NCBI). (2024). <i>Basic Local Alignment Search Tool (BLAST)</i> . https://blast.ncbi.nlm.nih.gov/Blast.cgi							
4	Petsko, G. A., & Ringe, D. (2004). <i>Protein structure and function</i> . Oxford University Press.							
5	Pettersen, E. F., Goddard, T. D., Huang, C. C., & Ferrin, T. E. (2024). <i>UCSF Chimera:</i> Visualization system for exploratory research and analysis. University of California, San Francisco. https://www.cgl.ucsf.edu/chimera/							
6	Research Collaboratory for Structural Bioinformatics Protein Data Bank (RCSB PDB). (2024). RCSB Protein Data Bank. https://www.rcsb.org							
. 7	Schrödinger, LLC. (2024). <i>PyMOL: Molecular graphics system</i> (Version 2.5). https://pymol.org							
8	Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). <i>SWISS-MODEL: Homology modelling of protein structures and complexes</i> . Swiss Institute of Bioinformatics. https://swissmodel.expasy.org							
9	Aloy, P., & Russell, R. B. (2006). Structural systems biology: Modelling protein interactions. Nature Reviews Molecular Cell Biology, 7(3), 188–197. https://doi.org/10.1038/nrm1858							
10	Baxevanis, A. D., & Ouellette, B. F. F. (Eds.). (2005). Bioinformatics: A practical guide to the analysis of genes and proteins (3rd ed.). Wiley-Blackwell							
11	Lesk, A. M. (2019). Introduction to bioinformatics (5th ed.). Oxford University Press.							
12	Mount, D. W. (2004). Bioinformatics: Sequence and genome analysis (2nd ed.). Cold Spring Harbor Laboratory Press.							
	1 2 3 4 5 6 7 8 9 10 11							

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
 Hands-on experiments Collaborative learning-Group discussion 	LecturingICTPractical sessions with
	demonstrations and hands on experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	70

• University Examination Continuous Comprehensive Assessment CCA	70 30
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answ and critical thinking questions)	ver 10
Writing assignment	5
	5
• Reports/ presentations/ demonstrations by the students • Internal Practical Examination	10
ample Questions to test Outcomes. Marks Question (Understanding)	

Marks Question (Understanding)
Marks Questions (Applying and Analyzing):
Marks Questions (Evaluating and Creating):

4 Marks Questions (Evaluating and Creating):

Employability for the Course / Programme

A Marks Questions (Evaluating and Creating):

Employability for the Course / Programme
This course integrates concepts from molecular biology, biochemistry, biophysics, and computational biology, fostering a multidisciplinary skill set essential for modern bioscience careers.

40	Pro	KU8PRJPLS415	
PRJ	Semester: 8	Hrs/week: 32 or 48	Credits: 8 or 12

- 1. Knowledge in Biology at 101-199 level
- 2. Ability to write examination in English

Course O	Outcomes
CO1	Ability to formulate research questions, develop hypotheses, and design scientifically valid experiments or field studies using appropriate methodologies.
CO2	Gaining proficiency in collecting, analyzing, interpreting, and presenting quantitative and qualitative data using modern tools, statistical techniques, and digital platforms.
CO3	Ability to integrate concepts from various scientific disciplines to address complex, real-world problems through innovative and evidence-based approaches.
CO4	Effective communication of scientific findings through written reports, presentations, posters, or publications following standard academic and ethical norms.
CO5	Exhibition of scientific integrity, teamwork, and awareness of ethical, environmental, and societal implications of scientific research, contributing responsibly to sustainable development and community well-being.

Mapping of Course Outcomes to PSOs/Pos

Ш												
prov	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
₹CO1	$\sqrt{}$	V	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
€CO3							\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
Ę̃CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$

Course Description

The **Project Course** serves as the capstone component of the undergraduate science programme, designed to immerse students in the authentic process of *doing science*. It provides a hands-on platform for students to apply theoretical knowledge, explore research questions, and develop problem-solving abilities through independent or guided investigation.

By engaging in experimental, field-based, or computational projects, students experience the complete research cycle—from conceptualization and data collection to analysis, interpretation, and dissemination.

This course nurtures *scientific temperament, creativity, critical thinking, and ethical responsibility*, preparing learners for advanced studies, research careers, and evidence-based decision-making in intentific and societal contexts. It embodies the spirit of inquiry and innovation

bjectives:

cultivate scientific curiosity and inquiry skills by engaging students in identifying, defining, and investigating real-world scientific problems through systematic research approaches.

- 2. To develop competence in experimental design and research methodology, enabling students to plan,

19-Dec-2025 04:56 PM - Page 200	3.4.	scientific data using appropriate statistical and computational tools. 4. To enhance scientific communication and documentation skills through the preparation of research proposals, reports, presentations, and publications that adhere to professional and ethical standards.								
c-202		Credit		Teaching H	lours	Assessment				
9-De	_/T	P/I	Total	L/T/P	Total	CCA	ESE	Total		
				0 . 22 . 0						
MIC) on 1	0	8/12	8/12	0+ 32+ 0 or 0+ 48 + 0	32/48	60 or 90	140 or 210	200 or 300		

Project guidance can be provided by a faculty member of the department. If necessary, the expertise of an external guide may be utilized. Facilities and expertise for the project can be on-campus or off-campus, with required permissions for off-campus projects. Students must maintain and submit a project log book/register along with the final report.

Student Responsibilities: Suggesting the topic, discussing with the project guide and peers, reviewing tterature, planning and designing the project, experimentation, data analysis, and preparing and presenting the project report.

Teacher/Supervising Guide Responsibilities: Confirming the experimentation, providing guidance, and correcting and certifying the project. topic, demonstrating, planning

Evaluation of Project

A student pursuing UG Honours with research must complete a mandatory research project worth 12 credits by the end of the eighth semester. For other UG Honours students, the project is optional. Since each credit © corresponds to 25 marks, the 12-credit project will be evaluated for a total of 300 marks. The evaluation scheme for the project is detailed below:

	能效贝
	的能
اعتموات	17090

c	et type	Maximum	CCA (30%)	ESE (70%)
6		Marks		
iveseg	rch	300	90	210
Projec	et of		Pre synopsis presentation and	Report, Methodology, Social Relevance,

12 Credits		viva	Scientific accuracy, innovation, data
		Review of literature	analysis, presentation skill ,viva
		Regularity and Participation	(components and their relative weightage
		(1:1:1)	can be decided by the department council)
Research	200	60	140
Project of 8		Pre synopsis presentation and	Report, Methodology, Social Relevance,
Credits		viva	Scientific accuracy, innovation, data
		Review of literature	analysis, presentation skill, viva
		Regularity and Participation	(components and their relative weightage
		(1:1:1)	can be decided by the department council)
			,

Employability for the Course / Programme
This is one of the fascinating course of the whole programme that will help the student to nurture the seeds of doing science.

The seeds of doing science of the whole programme that will help the student to nurture the seeds of doing science.

41	Diversity of Plants I	KU1DSCBOT103
Semest Hrs/we	er : 1 ek: 3 Theory + 1 Practical	Credits : 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes
CO1	Acquisition of basic knowledge in the cell structure and diversity among life forms, especially on lower plants and fungi.
CO2	Understanding of the terms used cell biology and also in the description of diverse forms of life.
CO3	Understanding the basic differences that exist among different groups of plants.
CO4	Ability to apply the concepts gathered in this course to the field of evolution and advanced diversity and ecological studies.
CO5	Firsthand experience in viewing the diversity using laboratory procedures and there by induction of enthusiasm in biological studies.

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V	V	V									
CO2			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$						
CO3						$\sqrt{}$						
CO4									$\sqrt{}$	$\sqrt{}$		
CO5											V	V

Course Description

This is an introductory biology course designed for UG students in general and BSc Zoology BSc Microbiology and BSc Forestry in particular. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module gives details on plant cell structure
- Second module focuses on the diversity of cell structure
- Third module gives a detailed account on vegetative and reproductive structures of fungi, which enables the student to understand the classification of fungi.
- Fourth module is a brief account on the diversity of algae, bryophytes and Pteridophytes and their economic importance and their classification.

This course will also provide you opportunities to observe diverse forms of plant life of lower groups including fungi, during laboratory sessions.

Course Objectives:

- 1. Understanding of the fundamental structure of cells.
- 2. Concept development in structure and reproduction of lower plants- algae and bryophytes and fungi.
- 3. Enable the student to appreciate bio diversity for sustainable development.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship.

	Credit		Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P Total		CCA	ESE	Total	
3	1	4	3 +0 + 2	5	35	65	100	
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)		

Module 1. Cells and Structure of plants (10 hrs)

- 1.1. History History of the progress of cell biology and development of cell theory. Origi and Evolution of cell. Characteristics of prokaryotic and eukaryotic cells.
- 1.2. Brief history of classification of organism from Aristotle's days to modern days. Si x Kingdom Classification.
- 1.3. Levels of organization of cells up to organism. Macroscopic forms of plant life: Brief morphological and functional account on Root, Stem, Leaf, Flower, Fruit and Seed.
- 1.4. Morphological Comparison of Herbs, Shrubs, Trees, Creepers, Twiners, Lianas and Epiphytes.

Module 2. Diversity of cell structure (15 hrs)

- 1. Cell as a unit of structure and function. Modern concept on cell. A brief account on plant cell structure.
- 2. Cellular envelopes- Types and functions Cell wall Chemistry, Ultra structure and function of Plant cell wall. Thickening of cell wall, Pits and pit apertures. Plasmodesmata.
- 3 Protoplasm and Cytoplasm. A brief account of cell organelles and Non living inclusions plant cell. Chloroplast structure and function.
- 4. Comparative account of cell structure and cell organelles among different lower plant groups- Algae, Bryophytes and Pteridohytes.

Module 3. Fungi (8 hrs)

- 3.1. General characters of Fungi and classification by Ainsworth (brief account).
- 3.2 General account on thallus structure and fruiting bodies among different fungal groups- Ascocarps, basidiocarps, ascogonium, perithecium, ascothecium, cleistothecium,
- 3.3. General account of Lichens- classification based on thallus morphology; major mycobionts and phycobionts.
- 3.4 Economic and ecological importance of fungi and lichens. Major Fungal diseases of plants, pets and human beings.

Module 4. Diversity of plants (12 hrs)

- 4.1. General characters of algae and their classification up to classes (F E Fritsch); Range of thallus variation in Algae.
- 4.2. Salient features of Bryophytes and brief account on their classification
- 4.3. General account on the characteristics of Pteridophytes and brief account on their classification
- 4. 4 Economic and ecological importance of Algae and Bryophytes and pteridophytes: food, industry, medicine, biofertilizers; algal bloom. Importance of Algae in Fisheries and livestock management. Role of Algae and Bryophytes in ecological succession and soil formation.

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Compound microscope and its parts.
- 2. Study of plant cell structure with the help of epidermal peel mount of Onion/*Crinum/Rheo*.
- 3. Diversity of cells- prokaryotic (*Nostoc*), eukaryotic (*Spirogyra*, *Oedogonium*, stomata of different leaves, Trichomes).
- 4. Study of non-living inclusions: cystolith (*Ficus*), raphides (*Pistia*), aleurone grains(Castor) and Starch grains (Rice, Wheat and Potato)
- 5. Photographs of Herbs, Shrubs, Trees, Creepers, Twiners, Lianas and Epiphytes from local sites.
- 6. Geotaggged Photographs of algae (2), bryophytes (5) and Pteridophytes(10).
- 7. Geotagged photographs of any 5 fungal fruiting bodies from the premises of.house and college
- 8. Collection, classification and documentation of different types of plants- algae, bryophytes and Pteridophytes.
- 9. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics- Theory

- 1. Geological time scale
- 2. Theories and experiments on evolution of life- classical and modern
- 3. Comparative account on different plant groups
- 4. Comparative account on prokaryotes and eukaryotes

Suggested Assignment Topics- Practical

- 1. Microphotographs of different stomata and trichomes
- 2. Collection of different mushrooms and their submission
- 3. Preparation of Album of fungal fruiting bodies.

Sugg	rested readings specific to the module.	
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.
No	•	
1	De Robertis E.D. and De Robertis E.M.F. (2017). Cell and Molecular	1, 2
	Biology 8 th Edition. Lee and Fab International edition, Philadelphia.	
2	Pawar, (2019). Cell Biology, Himalaya Publishing House, Mumbai.	1, 2
3	Rastogi, S.C. (2016).Cell and Molecular Biology. New Age International	1, 2
	Publishers, New Delhi.	
4	Verma P.S. and Agarwal V.K. (2016).Cell Biology (Cytology,	1, 2,
	Biomolecules, Molecular biology), Paper back, S.chand and Company	
	.Ltd.	
5	Kumar H D and H N Sharma, (1979). A textbook on Algae,	4
6	Dube, H.C. (2008). Fungi, Bacteria and Viruses. Agrobios	3
7	Sambamurty A. V. S. S., (2006). A Textbook of Bryophytes, Pteridophytes,	4
	Gymnosperms and Paleobotany. I.K. International publication, New Delhi.	
8	Arumugam N, Annie Ragland and V Kumaresan, A textbook of Botany,	4
	Saras Publication	
9	Annie Ragland, V Kumaresan and Arumugam N, (2020). A text of	3, 4
	Botany- algae, Fungi, Bryophytes, Microbiology and Plant Pathology,	

	Saras Publication.			
10	Pandey, S. N. & Misra, S. P. (2008). Taxonomy of Angiosperms. Ane	4		
	Books India, New Delhi.			
Core	Core Compulsory Readings			
1	Karp, G. (2010), Cell Biology, John Wiley & Sons, U.S.A. 6 th edition.			
2	Misra, A., & Agrawal, P. R., (1978). Lichens. Oxford and IBH, NewDelhi			
3	Singh, G. (2010). Plant systematics - an integrated approach (3rd Edn) Science			
	Publishers			
4	Bell, A.D (1991). Plant form- An illustrated guide to Flowering plant morphology.			
	Oxford University Press, New York, Tokyo.			
5	Gangulee, S.C., Das, K.S., Dutta, C.D., & Kar, A.K., (1968). College Botany Vol. I, II			
	and III. Central Education Enterprises.			
Core	Suggested Readings			
1	Starr, C., (2007). Biology: concepts and applications. VI edn. Thomson Press	3.		
2	Raven, P.H., Evert, R.F., & Eichhorn, S.E., (2013). Biology of plants. VIII th	Ed. W.H.		
	Freeman Publishers.			

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS		
End Semester Evaluation ESE		
University Examination-Theory	50	
Practical Examination	15	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15	
Writing assignment/ Seminar presentation	10	
Practical Examination + Laboratory reports	10	

Sample Questions to test Outcomes.

2 Marks Question

- What are the two main types of cells, and what distinguishes them from each other?
- ➤ List out any four features of fluid mosaic model of the cell membrane and its significance in cell biology.
- > Differentiate pit from pit fields
- ➤ What are the functions of plant roots?
- ➤ Differentiate phycobiont from mycobiont with examples

3 Marks Questions (Applying and Analyzing):

- Using a diagram, illustrate the structure of a plant cell wall and explain its functions.
- > The distribution and structure of chloroplast helps in the functioning of photosysntheis. Substantiate.
- Analyze the implications of the endosymbiotic theory for our understanding of cellular evolution.

- Explain the vegetative thallus of ascomycete fungi.
- 5 Marks Questions (Evaluating and Creating):
 - > Evaluate the impact of advancements in cell biology on modern scientific research and technology.
 - ➤ Knowledge in biodiversity is highly essential for the economic growth and human welfare. Substantiate the statement.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in cell biology as well as in diversity of life

42	Plant Ecology and Phytogeography	KU1DSCBOT104
Semest Hrs/we	er : 1 ek : 3 Theory + 1 Practical	Credits: 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes				
CO1	Acquisition of basic knowledge in ecology and phytogeography.				
CO2	Understanding the dynamic nature of ecosystems in particular and biosphere in general.				
CO3	Understanding the basic relationships that exist among different species.				
CO4	Ability to apply the concepts gathered in this course to the field of evolution and modern ecology				
CO5	First -hand experience in observing the major ethical and legal aspects in environmental sciences.				

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1		$\sqrt{}$	V									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$							
CO3			$\sqrt{}$	\checkmark								
CO4								V	$\sqrt{}$	$\sqrt{}$		
CO5											$\sqrt{}$	$\sqrt{}$

Course Description

This is an intermediate minor course designed for BSc Zoology, Forestry and Microbiolgy students. It emphasizes on the basic principles and processes that are very relevant to the vast field of environmental sciences.

- First module is an introduction to environmental sciences.
- Second module emphasizes on the basic structure of Ecosystem
- Third module is related to the function and dynamics of ecosystem.
- Fourth module is mainly focused on the basic principles of phytogeography and relationship of plant with biodiversity.

This course will also provide opportunities to do some laboratory work to find out the adaptations of plants as well as regional differences in physicochemical parameters of various ecosystems.

Course Objectives:

- 1. To enable the student to appreciate bio diversity and the importance of various conservation strategies, laws and regulatory authorities.
- 2. To recognise the need for more research to create a baseline data for sustainable exploitation- Think globally and Act locally
- 3. To observe and analyse the interrelationship between the geography and pattern of distribution of plants.

	Credit		Teaching H	ours	As	ssessment	
L/T	P/I	Total	L/T/P	Total	Cotal CCA ESE To		
3	1	4	3 + 0 + 2 (45 +0 +30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100

Module 1. Introduction to Environmental Science (5 hrs)

- 1.1. History, scope and importance of ecology and environmental science.
- 1.2. Difference between ecology, environmental biology and environmental science and environmental studies.
- 1.3. Branches of ecology- autecology, synecology.
- 1.4. Motto and Achievements of Major Indian Institutes and Research Centres in Ecology and Environmental Science.

Module 2. Basic Structure of Ecosystem (8 hrs)

- 1. Structure and hierarchy of ecological units- species, population, community, ecosystem, biome and biosphere.
- 2. Basic structure of ecosystem- Factors affecting the structure of ecosystem-biotic-Producers, consumers and decomposers; and abiotic- climatic, edaphic, physiographic.
- 3. Concept of food chain and food web, Energy flow, 10% theory. Ecological Pyramids-Pyramid of numbers, biomass and energy. Erect and inverted.
- 4. General structure of pond and forest ecosystem.

Module 3. Function and Dynamics of Ecosystem (20 hrs)

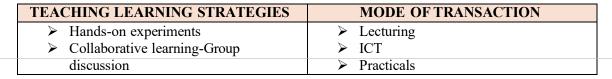
- 3.1. Concept of Productivity. Primary productivity, Secondary Productivity, GPP and NPP. Comparative account on productivity major ecosystems in the biospehere. Concept of Biogeochemical Cycles. Carbon Cycle, Nitrogen Cycle, Sulphur and Phosphorus Cycle. Water Cycle.
- 3.2. Concept of habitat and ecological niche, Ecotone and Edge Effect. Concepts in ecospecies-Ecads and Ecotypes.
- 3.3. Concept of Succession: Types, characteristic features, structure of each substages in Xeracrh, Hydrarch and Mesarch.
- 3.4. Adaptations -morphological, anatomical and physiological in Hydrophytes, Xerophytes, Halophytes, Epiphytes and Parasites.

Module 4. Role of plants and Phytogeography (12 hrs)

- 4.1. Role of plants in structure, function and evolution of existing ecosystems. Deforestation and its ill effects on biodiversity and ecosystems.
- 4.2. Biodiversity. Definition and Types. India as a megadiversity centre. Endangered and endemic plants of India with special emphasis to Western Ghats.
- 4.3. Phytogeography- Definition, concepts --Descriptive and dynamic -Continental drift, age and area theory,
- 4.4. Plant migration and barriers. Topographic factors- Altitude and latitude. Vegetation types of India

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Study of ecological and anatomical modifications of xerophyte, hydrophyte, halophyte, parasite and epiphyte.
- 2. Estimation of DO and BOD and calculate the primary productivity of pond water.
- 3. Observation of ecads and ecotypes, if available in the college campus.
- 4. Estimation of biodiversity in the premises of house and college campus.
- 5. Collection of maps showing hotspots of biodiversity.
- 6. Visit to a local polluted site and/or reserve forest. for documentation of major pollutants/species
- 7. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.


Suggested Assignment Topics- Theory

- 1. Structure of Ecosystem
- 2. Food chain and Food Webs in Nearby locality
- 3. Vegetation types of India

Suggested Assignment Topics- Practical

- 1. Visit to pond ecosystem and estimation of physicochemical parameters
- 2. Estimation DO in different temperatures

Sugg	Suggested readings specific to the module.					
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.				
No	-					
1	Kumaresan V and N Arumugam, 2020. Plant Ecology &	1, 2, 3,4				
	Phytogeography – Saras Publication					
2	Deka U and T Datta, 2023. Plant Ecology and Phytogeography, Asian	1, 2, 3, 4				
	Humanities Press					
3	Ambasht RS and N K Ambasht, 1988. Text book of Plant Ecology,	1,2, 3				
	Students Friends.					
4	Bhatnagar A, 2010. Ecology and Environment. Oxford	1, 2,3				
5	Bharucha F R, 1983. A text book of the Plant Geography of India, Oxford	4				
	University Press.					
6	Mc Dougall, W B B, 2022. Plant Ecology, Legare Street Press. 2, 3					
Core	Core Compulsory Readings					
1	Kormondy, E. 1989. Concepts of Ecology (3rd Ed.). Printice Hall of India, New					
	Delhi.					
2	Schulze E. D., Beck, E., & Klaus Mü ller-Hohenstein. (2005). Plant ecology.	Springer.				
Core	Suggested Readings					
1	Bock, J. H., Linhart Y B, Stebbins G L and C E Turner, 2020. The Evolutionary					
	Ecology of plants. CRC Press.					
2	Pullaiah, T, 2024. Biodiversity Hotspot of the Western Ghats and Sri Lar	ıka. Apple				
	Academic Press.					

ASSESSMENT RUBRICS		
End Semester Evaluation ESE		
University Examination-Theory	50	
Practical Examination	15	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15	
Writing assignment/ Seminar presentation	10	
 Practical Examination + Laboratory reports 	10	

Sample Questions to test Outcomes.

2 Marks Question

- List out any two environmental science research institutes in India and their major achievements
- > Define ecological niche with example.
- > Differentiate GPP and NPP
- List out the similarities of Food Chain and Food web
- Enlist any four morphological adaptations of Xerophytes with example.

3 Marks Questions (Applying and Analyzing):

- > Discuss the adaptive features of Halophytes and list out the similarities with xerophytes.
- ➤ How does altitude and latitude influences the plant vegetation?
- ➤ What are the similarities and dissimilarities between autecology and synecology.

5 Marks Questions (Evaluating and Creating):

- ➤ How do anthropogenic land conversion and natural succession influence ecosystem dynamics? Illustrate with specific impacts on biodiversity and ecosystem services.
- Mangrove ecosystems are found to be more productive and diverse. Substantiate and evaluate this statement based on Edge effect.

Employability for the Course / Programme

It is one of the basic minor courses which is very essential for understanding the diversity of plants and their ecosystems.

43	Reproduction and Life cycle of plants	KU2DSCBOT105
Semest Hrs/we	rer : 2 rek : 3 Theory + 1 Practical	Credits : 4

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes				
CO1	Acquisition of basic knowledge in diversity of reproduction and life cycle among life forms, especially plants.				
CO2	Understanding of the terms used in the description of diverse forms of life.				
CO3	Understanding the basic differences that exist among different reproductive methods of plants.				
CO4	Ability to apply the concepts gathered in this course to the field of evolution and advanced diversity and ecological studies.				
CO5	Firsthand experience in viewing the diversity using laboratory procedures and there by induction of enthusiasm in biological studies.				

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	√		$\sqrt{}$									
CO2			V	$\sqrt{}$	$\sqrt{}$							
CO3			V				V					
CO4								V	V			
CO5											$\sqrt{}$	$\sqrt{}$

Course Description

This is an introductory biology course designed for UG students in general and BSc Zoology BSc Microbiology and BSc Forestry in particular. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module deals with the reproduction and life cycles of plants.
- Second module focuses on the reproduction algae and bryophytes.
- Third module gives an idea on the reproduction of pteridophytes and gymnosperms.
- Fourth module delves into the reproduction in angiosperms.

This course will also provide opportunities to observe and experience diverse forms of plant reproduction through various laboratory sessions.

Course Objectives:

- 1. Understanding of the fundamental concepts in reproduction and life cycle of plants.
- 2. Concept development in diversity of general growth and development plants.
- 3. Enable the student to appreciate bio diversity.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/enterpreneurship

Credit			Teaching H	ours	Assessment				
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total		
3	1	4	3 +0 + 2	5	35	65	100		
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)			

Module 1. Reproduction and Life cycles of plants (20 hrs)

- 1. Definition and significance of Reproduction. Brief account on reproduction of prokaryotic and eukaryotic cells. A comparative account on reproduction among different Fungal groups.
- 2. Types of reproduction with examples- vegetative, asexual and sexual reproduction. Importance of reproductive methods in identification and classification of plants. General Account on Vegetative methods with examples: Buds, Bulbils, Fragmentation; Asexual reproduction with examples- Spores- Zoospores, Hypnospores, Chlamydospores.
- 3. Sexual reproduction- Characteristics and Substages- Gametogenesis and Fertilization. Comparative account on reproduction among different plant groups. Brief account on post fertilization changes. Types of sexual reproduction—Isogamy, Anisogamy and Oogamy with examples.
- 4. Different Life cycles -haplontic diplontic, haplodiplo biontic life cycles.

Module 2. Diversity of reproduction in Lower plants (8 hrs)

- 1. Vegetative methods of reproduction among different algal groups.
- 2. Sexual reproduction in Algae- General and comparative account.
- 3. Vegetative methods of reproduction among different groups of Bryophytes. .
- 4. Sexual reproduction in Bryophytes. General and comparative account

Module 3. Diversity of reproduction in Higher plants (7 hrs)

- 1. Vegetative methods of reproduction among different pteridophyte groups.
- 2. Sexual reproduction in Pteridophytes- General and comparative account.
- 3. Vegetative methods of reproduction among different groups of Gymnosperms.
- 4. Sexual reproduction in Gymnosperms. General and comparative account.

Module 4. Diversity of reproduction in Angiosperms (10 hrs)

- 1. Vegetative methods of propagation in angiosperms-natural- root stem and leaf as propagules and human intervention- budding, layering, grafting and micropropagation.
- 2. Sex organs of angiosperms- flower –parts and their function.
- 3. Brief account on gametogenesis in plants; Types of pollination; Pollen tube growth and fertilization. Brief account on embryo and seed development.
- 4. Life cycle of angiosperms. Seed- germination-sapling establishment- vegetative growth-flowering pollination pollen tube growth fertilization embryo formation fruits.

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Collection of different types of flowers, inflorescence, fruits and seeds.
- 2. Observation of conjugation in Spirogyra.

- 3. T.S of mature anther
- 4. Observation of Dicot embryo and Monocot embryo.
- 5. Dissection of Embryo from Flower buds
- 6. Digitalisation of any one -Flower/inflorescence/placentation/flower as a modified shoot/anthers/pollinia or any other
- 7. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics- Theory

- 1. Comparative analysis of different reproductive methods in different plant groups
- 2. Poster preparation on life cycles of different groups
- 3. Vegetative propagation methods in various crops

Suggested Assignment Topics- Practical

- 1. Observe diverse reproductive structure in major plant groups and classification of collected specimens
- 2. Finding out the mixed characters in the inflorescences of common plants.

Sl. No	Title/Author/Publishers of the Book specific to the module	Module No.
1	Pandey, S. N. (2009). Plant Anatomy and Embryology. India: Vikas Publishing House Pvt Limited	4
2	Bhojwani, S. S, Bhatnagar, S. P., and Dantu, P. K. (2015). The embryology of angiosperms. Vikas Publishing House	4
3	Singh A K and Kumar A, (2023). Plant Propagation and Nursery management, AK Kataria and Sons.	1, 4
4	Kumar H D and H N Sharma, (1979). A textbook on Algae,	2
5	Vasishta, P. C. (1980). Gymnosperms, S Chand & Co., Ltd., New Delhi	3
6	Sambamurty A. V. S. S., (2006). A Textbook of Bryophytes, Pteridophytes, Gymnosperms and Paleobotany. I.K. International publication, New Delhi.	2, 3
7	Arumugam N, Annie Ragland and V Kumaresan, A textbook of Botany, Saras Publication	1,2, 3, 4
8	Annie Ragland, V Kumaresan and Arumugam N, 2020. A text of Botanyalgae, Fungi, Bryophytes, Microbiology and Plant Pathology, Saras Publication.	2, 3
9	Pandey, S. N. & Misra, S. P. (2008). Taxonomy of Angiosperms. Ane Books India, New Delhi.	4
10	Vashista, B. R, (1993). Gymnosperms, S Chand & Co., New Delhi.	3
Core	Compulsory Readings	
1	Maheshwari, P. (1971). An introduction to the embryology of angiosperms. Tata Hill Publishing Company Ltd., New Delhi.	a McGraw
	Vashista, B. R, (1993). Bryophyta, S Chand & Co., New Delhi.	
	Vashista, B. R, (1993). Pteridophyta, S Chand & Co., New Delhi.	
2	Davis W, (2006). Plant Propagation. Read Books.	
Core	Suggested Readings	
1	Kains M. G., 2010. Propagation of plants - A complete guide for profesamateur growers of plants by Seeds, Layers, Grafting and Budding, With C	
	Nursery And Greenhouse Management, Read Books.	1

2	Raven, P.H., Evert, R.F., & Eichhorn, S.E., (2013). Biology of plants. VIIIth Ed. W.H.
	Freeman Publishers.
3	Starr, C., (2007). Biology: concepts and applications. VI edn. Thomson Press.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS						
End Semester Evaluation ESE						
University Examination-Theory						
Practical Examination	15					
Continuous Comprehensive Assessment CCA						
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)						
Writing assignment/ Seminar presentation						
 Practical Examination + Laboratory reports 	10					

Sample Questions to test Outcomes.

2 Marks Question

- > Discuss the most important two stages in an amphimictic life cycle
- > Define haplontic life cycle and cite an example
- > Draw a neat labeled diagram of mature anther T S

3 Marks Questions (Applying and Analyzing):

- > Comment on 'Flower is a modified shoot'.
- > Compare and contrast Orthotrpus and Anatropus ovules with examples.
- > Distinguish different types of endosperms.
- > Distinguish the lomentum fruit from the legume type.

5 Marks Questions (Evaluating and Creating):

- ➤ Describe megasporogenesis and female gametophyte formation in *Polygonum* with the help of neat labeled diagram.
- > Distinguish different types of Racemose inflorescence with the help of diagrammatic sketches and brief description of salient features of each type.
- ➤ Botanists classify inflorescences into three or four types. Nature doesn't obey our classification rules. Substantiate the two statements.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in cell biology as well as in diversity of lif

44	Angiosperm Taxonomy and Morphology	KU2DSCBOT106
Semest Hrs/we	er : 2 ek: 3 Theory + 1 Practical	Credits : 4

- 1. Knowledge in Biology at 200-299 level
- 2. Ability to write examination in English

Course	Outcomes
CO1	Understanding of the fundamental concepts in morphological characters and classification of Angiosperms.
CO2	Concept development in diversity that exist in angiosperms through studies in vegetative and floral morphology.
CO3	Enable the student to classify different types flower, inflorescences, fruits and seeds.
CO4	Skill in comparison by observing the features, both vegetative and reproductive, and thereby classification of angiosperms.
CO5	Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	V	V	V									
CO2			$\sqrt{}$	V	$\sqrt{}$							
CO3			$\sqrt{}$				$\sqrt{}$					
CO4								V	V			
CO5											V	V

Course Description

This is an introductory biology course designed for UG students in general and BSc Zoology BSc Microbiology and BSc Forestry in particular. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module deals with the reproduction and life cycles of plants.
- Second module focuses on the reproduction algae and bryophytes.
- Third module gives an idea on the reproduction of pteridophytes and gymnosperms.
- Fourth module delves into the reproduction in angiosperms.

This course will also provide opportunities to observe and experience diverse forms of plant reproduction through various laboratory sessions.

Course Objectives:

- 1. Understanding of the fundamental concepts in reproduction and life cycle of plants.
- 2. Concept development in diversity of general growth and development plants.
- 3. Enable the student to appreciate bio diversity.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/enterpreneurship

Credit			Teaching H	ours	Assessment				
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total		
3	1	4	3 + 0 + 2	5	35	65	100		
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)			

Module 1. Vegetative morphology 5 Hrs

Root- Types of roots and brief account on modifications Stem- Types of stem and brief account on modifications

Leaf - simple, compound; venation and phyllotaxy and brief account on modifications

Module 2. Reproductive Morphology 8 hrs

Inflorescence: racemose, cymose and special types

Flower as a modified shoot, structure of flower - floral parts, their arrangement, relative position; cohesion and adhesion of floral parts, symmetry of flowers; types of aestivation and placentation; floral diagram and floral formula.

Module 3. Angiosperm Classification 7 Hrs

Systems of classification Artificial, Natural of Phylogenetic (Brief account only). Nomenclature-Binomial system of nomenclature, ICBN (Brief account only)

Bentham & Hooker's system of classification (Up to series) and its merits and demerits. Herbarium technique. Significance of herbaria and botanical gardens; important herbaria and botanical gardens in India.

Module 4. Representative Angiosperm Families 15 Hrs

Study the following families of Bentham and Hookers system of classification with special reference to major identifying characters and economic importance.

Annonaceae, Malvaceae, Fabaceae (with special emphasis to Subfamily Papilionoidiae, two others mention only), Rubiaceae, Asteraceae, Apocynaceae, Solanaceae, Euphorbiaceae, Orchidaceae. Evolutionary significance of the families studied Primitive and advanced characters of the families mentioned above. Evolutionary significance of Angiosperms-relationship with gymnosperms

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Identify different types of inflorescences and fruits included in the syllabus by affixing photographs in the record
- 2. Learning family characteristics by demonstrations in the laboratory using one typical plant from each family Annonaceae, Malvaceae, Fabaceae (with special emphasis to Subfamily Papilionoidiae), Rubiaceae, Asteraceae, Apocynaceae, Solanaceae and Euphorbiaceae
- 3. Learning to describe plants in technical terms identifying the family to which the plant belongs.
- 4. Each student shall submit 10 herbarium specimens belonging to the families included in the syllabus & field book for evaluation
- 5. Documentation of the practical works videos, microscopic photo, diagrams and photographs

into a record book.

Suggested Assignment Topics- Theory

- 1. Comparative analysis of different reproductive methods in different plant groups
- 2. Poster preparation on life cycles of different groups
- 3. Vegetative propagation methods in various crops

Suggested Assignment Topics- Practical

- 1. Observe diverse reproductive structure in major plant groups and classification of collected specimens
- 2. Finding out the mixed characters in the inflorescences of common plants.

Sugg	Suggested readings specific to the module.						
Sl.	Title/Author/Publishers of the Book specific to the module	Module					
No		No.					
1	Gangulee, S.C., Das, K.S., Dutta, C.D., & Kar, A.K., (1968). College Botany	1,2, 3, 4					
	Vol. I, II and III. Central Education Enterprises						
2	Baruah A, 2023. Angiosperm Taxonomy, Asian Humanities Press	3, 4					
3	Gupta R.K. (1981). A Text Book of Systematic Botany, Atma Ram & Sons,	3, 4					
	Delhi						
4	Tewari L M and Jeewan S. Jalal (2011). Flowering Plants- Angiosperms,	1, 2, 3,4					
	Jagdamba Publishing Company, New Delhi.						
5	Harris JG and M W Harris, 2001. Plant Identification Terminology: An	1, 2, 3, 4					
	Illustrated Glossary, Spring Lake Publishers						
6	Ragland A and V Kumaresan, Angiosperms, Saras Publication	2, 3					
7	Pandey, S. N. & Misra, S. P. (2008). Taxonomy of Angiosperms. Ane Books	3, 4					
	India, New Delhi.						
8	Singh V, Pande P C and D K Jain, 2019. Taxonomy of Angiosperms, Rastogi	3					
	Publications.						
Core	e Compulsory Readings						
1	Gifford, E.M., & Foster, A.S., (1988). Morphology and Evolution of Vascu	ılar Plants.					
	W.H. Freeman & Company, New York						
2	Simpson M G, (2019). Plant Systematics, Academic Press.						
3	Sharma ,O.P. (2010). Plant Taxonomy, The Mc Graw Hill Companies						
Core	Suggested Readings						
1	Douglas, E. & Soltis et al. (2005). Phylogeny and Evolution of Angiosperm	s. Sinauer					
	Associates Inc.						
2	Kitching, I.J. et al. (1998). Cladistics - the theory and practice of Pa	arsimony					
	Analysis. Oxford University Press.						

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination-Theory	50	
Practical Examination	15	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15	
Writing assignment/ Seminar presentation	10	

• Practical Examination + Laboratory reports 10	
---	--

Sample Questions to test Outcomes.

2 Marks Question

- ➤ What are the major features of polypetalae?
- > Define aestivation
- Name any two phyllotaxy with appropriate examples.
- > Expand ICBN

3 Marks Questions (Applying and Analyzing)

- Flower is a modified shoot. Substantiate with the help of any four features.
- ➤ Position of gymnosperm in Bentham and Hookers' classification is found to be less significant. Apply the concepts of primitive and advanced characters in pheanerogams to substantiate the statement.
- ➤ How does herbaria preparation helps in plant taxonomy?

5 Marks Questions (Evaluating and Creating):

- > Tubers are different in its morphology. Critically evaluate this statement.
- Asteraceae is having several advanced and primitive characters. Classify the characters of asteraceae to advanced and primitive; in a tabular form.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in cell biology as well as in diversity of life

45	Diversity of Plants II	KU3DSCBOT206
Semest Hrs/we	rer : 3 rek : 3 Theory + 1 Practical	Credits : 4

- 1. Knowledge in Biology at 100-199 level.
- 2. Completed the course Diversity of Plants I
- 3. Ability to write examination in English

Course	Outcomes
CO1	Acquisition of basic knowledge in the diversity among life forms, especially on plants.
CO2	Understanding of the terms used in the description of diverse forms of life.
CO3	Understanding the basic differences that exist among different groups of plants.
CO4	Ability to apply the concepts gathered in this course to the field of evolution and advanced diversity and ecological studies.
CO5	First-hand experience in viewing the diversity using laboratory procedures and there by induction of enthusiasm in biological studies.

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1V	V	$\sqrt{}$										
CO2			V	$\sqrt{}$	$\sqrt{}$							
CO3				\checkmark	\checkmark	$\sqrt{}$						
CO4												
CO5										V		$\sqrt{}$

Course Description

This is an intermediate biology course designed for UG students in general and BSc Zoology BSc Microbiology and BSc Forestry in particular. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module gives an idea on reproduction and lifecycle of algae through type organism studies.
- Second module focuses on the features and life history of selected fungal taxa.
- Third module is a discussion on bryophytes and pteridophytes, with an emphasis to reproduction and life cycle.
- Fourth module is dealing with the reproductive structure and life cycle of gymnosperms.

This course will also provide you opportunities to observe diverse cells and hands-on training to identify stages of mitosis and meiosis during laboratory sessions.

- 1. Understanding of the fundamental concepts in description of plants.
- 2. Concept development in structure and reproduction of lower groups of plants.
- 3. Enable the student to appreciate biodiversity.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship

	Credit		Teaching H	ours	A		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3 +0 + 2	5	35	65	100
			(45 + 0 + 30)	(75)	(25T+10P)	(50T+15P)	

COURSE CONTENT

Module 1. Algae (15 hrs)

Reproduction and life history of the following groups with reference to the types mentioned (Excluding the developmental stages).

- a) Cyanophyceae *Nostoc*
- b) Chlorophyceae -Volvox, Spirogyra and Chara.
- c) Phaeophyceae Sargassum
- d) Rhodophyceae Polysiphonia

Module 2. Fungi (10 hrs)

General characters, thallus structure, reproduction and life history of the following groups with reference to the types mentioned:

- a) Zygomycotina Rhizopus
- b) Ascomycotina Penicillium
- c) Basidiomycotina Agaricus

Module 3. Bryophytes and Pteridophytes (12 hrs)

General characters and classification -Morphology, anatomy, reproduction and life cycle of *Riccia* and *Funaria*.

General characters - Structure and reproduction of Selaginella and Nephrolepis

Module 4. Gymnosperms (8 hrs)

General characters - Structure and reproduction of Cycas and Pinus

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Identification of the vegetative & reproductive structures: Cyanophyceae *Nostoc;* Chlorophyceae *Spirogyra* and *Chara;* Rhodophyceae *Polysiphonia; Selaginella; Cycas*
- 2. Study of vegetative structures *Volvox* colony, *Sargassum* lateral, *Riccia* thallus, *Cycas* Leaflet TS
- 3. Study of reproductive structures *Spirogyra* lateral and scalariform conjugation; *Rhizopus* zygospore and sporangiospore; *Agaricus* Basidiocarp entire and Gill TS, *Nephrolepis* sporophyll T S, *Cycas* sporophylls (entire), *Pinus* male and female cones (entire).
- 4. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics- Theory

- 1. Thallus structure in algae
- 2. Cell Structure and Pigments in mentioned algal genera

- 3. Lifecycle in algae with examples
- 4. Morphological variation in bryophytes
- 5. Variation in Reproduction among fungi
- 6. Leaf structure in Pteridophytes
- 7. Distribution of Gymanosperms
- 8. Fossil gymnosperms
- 9. Poster presentation in Life cycle of Algae, Archegoniates and Fungi.

Suggested Assignment Topics- Practical

- 1. Fungal culture and collection
- 2. Bryophyte collection
- 3. Variation in Sporangium and sporophyll of ferns
- 4. Collection of algae from ponds

Sugg	Suggested readings specific to the module.					
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.				
No						
1	Bilgrami K S and L C Saha, (2020). A Textbook of Algae, Athithi Books.	1				
2	Sundararajan S, (2023). Introduction to Algae, V M Books	1				
3	Singh, V, Pande P C and D K Jain, (2017). Archegoniate (bryophyta,	2, 3, 4				
	pteridophyta & gymnosperms), Rastogi Publications.					
4	Yadav, S.,2022. Archegoniate with practical, Mahaveer Publications.	2,3, 4				
5	Singh, V, Pande P C and D K Jain, (2022). Botany Archegoniates And	2, 3, 4				
	Plant Architecture, Rastogi Publications					
6	Sirka, Y., (2021). An Introduction to Archegoniate Plants: Bryophytes,	2, 3, 4				
	Pteridophytes and Gymnosperms, Academic Aspirations.					
Core	e Compulsory Readings					
1	Pandey, A, Malhotra, S, Shukla, K, Husain, M, Saxena, S, (2023). Plant	architecture:				
	insights from Archegoniate, Book Saga Publications.					
2	Acharya, B C, (2020). Archegoniates, Kalyani Publishers.					
Core	Suggested Readings					
1	Vanderpoorten, A and B Goffinet, (2009). Introduction to Bryophytes,	Cambridge				
	University Press.	_				
2	Price D and C Bealey, (2022). A field guide to Bryophytes, Species Recover	y Trust.				

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
Discussion	Practicals

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination-Theory	50			
Practical Examination	15			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15			
Writing assignment/ Seminar presentation				
Practical Examination + Laboratory reports	10			

Sample Questions to test Outcomes.

2 Marks Question

- ➤ What is meant by stele? Give an example for polystele from Pteridophytes.
- > Give a short note on heterospory with an example.
- > Differentiate elaters from spores
- List out any four reserve food materials specific to algal groups.

3 Marks Questions (Applying and Analyzing):

- Amphibians are having the ability to live in two types of habitats. Comment on amphibious nature of bryophytes.
- Comment on the peculiarities of *Polysiphonia* life cycle.
- Write short note on different life cycles in algae.

5 Marks Questions (Evaluating and Creating):

- > Critically analyze the characters of *Cycas* and comment on the xerophytic nature.
- > Give a comparative account on reproductive structures in fungi.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in biology as well as in daily life

46	Angiosperm Anatomy and Embryology	KU3DSCBOT207
Semest Hrs/we	er : 3 ek : 3 Theory + 1 Practical	Credits: 4

- 1. Knowledge in Biology at 200-299 level
- 2. Ability to write examination in English

Course	Outcomes
CO1	Knowledge in the internal structure of angiosperm.
CO2	Understanding of the anatomical, palynological and embryological related terms used in the description of diverse forms of life.
CO3	Understanding the variations in the internal structure and reproduction that exist in various plant groups.
CO4	Interpret the adaptive and protective mechanisms exhibited by plants in response to various environmental conditions.
CO5	Ability to apply the concepts in the field of evolution and diversity studies.
CO6	Firsthand experience in viewing cells under microscope and there by induction of enthusiasm in biological studies.

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1V	V	V	V	<u>l</u>								
CO2			\checkmark	\checkmark								
CO3				\checkmark	\checkmark							
CO4								V	$\sqrt{}$			
CO5										$\sqrt{}$		$\sqrt{}$

Course Objectives

- 1. Understand plant tissue classification, structure, and functions.
- 2. Explore plant anatomy, including primary structures and tissue systems.
- 3. Study plant reproduction mechanisms and embryology.
- 4. Develop practical skills in observing and analyzing plant structures and tissues.

	Credit Teaching Hours As					ssessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	1	4	3 +0 + 2 (45 +0 +30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100

COURSE CONTENT

Module 1. Tissues 10 Hrs

Tissues – meristematic and permanent; classification of meristems based on position, origin; Organization of shoot apex and root apex- Histogen theory & Tunica corpus theory. Simple and complex tissues, secretory tissues (nectarines and hydathodes). Vascular bundles – types: conjoint collateral, bicollateral, concentric and radial.

stem and dicot root. Anomalous secondary thickening in *Boerhaavia*. Heart wood and sap wood; tyloses; hard wood and soft wood; growth rings, dendrochronology.

Module 3. Embryology 15 Hrs

Introduction and Historical account of Embryology.

Structure and functions of Microsporangium and wall layers. Microsporogenesis and development of male gametophyte.

Megasporogenesis and development of female gametophyte (*Polygonum*, *Allium* and *Peperomia*). Types of ovules.

Pollination-mechanism. Fertilisation. Endosperm – structure, development and types (Nuclear, Cellular, Helobial, Special type – Ruminate). Embryo – Structure and development of Dicot embryo, Monocot embryo. Polyembryony- Classification and Significance, Apomixis, Agamospermy- Apospory and Parthenocarpy.

Module 4. Fruits, Seeds and Palynology 10 Hrs

Fruits-classification- simple, aggregate and multiple

Seeds – Definition, Types, Structure and germination.

Palynology - Pollen structure and Morphology, Acetolysis of pollen grain. Economic importance, Pollen allergy.

Plant animal Interaction in pollination and seed dispersal. Co-evolution of plants and insects, Role of Plant-Animal interactions in sustainability of ecosystem. Brief account of myrmecophily, chiropterophily.

Module 5. TEACH Space (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Observation of apical meristems in root and stem.
- 2. Microphotographs of different types of tissues- Parenchyma- Aerenchyma, Chlorenchyma (Spongy, Palisade), Collenchyma, Sclerenchyma, Xylem and Phloem
- 3. Microphotographs of different types of tissue systems- trichomes, stomata- Dicot and Monocot
- 4. Primary structures in dicot stem (*Centella*), root (*Tinospora*), and leaf (*Ixora*) and monocot stem (*Grass*), root (*Colocasia*), and leaf (*Grass*).
- 5. Secondary Structures in Dicot root (*Tinospora*) and Stem (*Vernonia*)
- 6. Anomalous secondary thickening in *Boerhaavia* stem.
- 7. TS of Mature anther- Datura, Ixora
- 8. Observation of Pollinia- Calotropis/ Orchids
- 9. Embryos of Monocots and Dicots
- 10. Documentation of the practical works videos, microscopic photo

Suggested Assignment Topics- Theory

- 1. Comparative analysis of different reproductive methods in different plant groups
- 2. Poster preparation on life cycles of different groups
- 3. Vegetative propagation methods in various crops

Suggested Assignment Topics- Practical

- 1. Observe diverse reproductive structure in major plant groups and classification of collected specimens
- 2. Finding out the mixed characters in the inflorescences of common plants.

Sugg	Suggested readings specific to the module.					
Sl.	Title/Author/Publishers of the Book specific to the module	Module				
No		No.				
1	Pandey, S. N. (2009). Plant Anatomy and Embryology. India: Vikas	1, 2, 3				
	Publishing House Pvt Limited					
2	Bhojwani, S. S, Bhatnagar, S. P., and Dantu, P. K. (2015). The embryology	3				
	of angiosperms. Vikas Publishing House					
3	Pandey, B P, (2001). Plant Anatomy, S Chand Publications	1,2, 3				
4	Siddiqui G A, (2012). Plant Anatomy, Pragun Publications.	2				
5	Rudall, P A, (2020), Anatomy of Flowering Plants An Introduction to Plant	4				
	Structure and Development, Cambridge University Press.					
6	Spjut, R. W, (1994). A Systematic Treatment of Fruit Types, The Newyork	4				
	Botanical Garden.					
7	Dutta A C, 1964. A Class Book of Botany, Oxford University Press	1,2, 3, 4				
8	Gangulee, H C and A K Kar, 2011. College Botany- Volume I, II, III New	1,2, 3, 4				
	Central Book Agency (P) Ltd.					
Core	Compulsory Readings					
1	Maheshwari, P. (1971). An introduction to the embryology of angiosperms. Tat	a McGraw				
	Hill Publishing Company Ltd., New Delhi.					
2	Crang, R, S L Sobaski and R, Wise, (2018). Plant Anatomy: A Concept-Based Approach					
	to the Structure of Seed Plants, Springer.					
3	Davis W, (2006). Plant Propagation. Read Books.					
Core	Suggested Readings					
1	Kains M. G., (2010). Propagation of plants - A complete guide for profess	ional and				
	amateur growers of plants by Seeds, Layers, Grafting and Budding, With C	hapters On				
	Nursery And Greenhouse Management, Read Books.					
2	Raven, P.H., Evert, R.F., & Eichhorn, S.E., (2013). Biology of plants. VIII th I	Ed. W.H.				
	Freeman Publishers.					
3	Starr, C., (2007). Biology: concepts and applications. VI edn. Thomson Press.					

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	65
University Examination-Theory	50
Practical Examination	15
Continuous Comprehensive Assessment CCA	35
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15
Writing assignment/ Seminar presentation	10
Practical Examination + Laboratory reports	10

Questions to test Outcomes.

arks Question

- Discuss the most important two stages in an amphimictic life cycle
 Define haplontic life cycle and cite an example
 Draw a neat labeled diagram of mature anther T S

- 3 Marks Questions (Applying and Analyzing):
 - > Comment on 'Flower is a modified shoot'.
 - > Compare and contrast Orthotrpus and Anatropus ovules with examples.
 - > Distinguish different types of endosperms.
 - > Distinguish the lomentum fruit from the legume type.
- 5 Marks Questions (Evaluating and Creating):
 - > Describe megasporogenesis and female gametophyte formation in *Polygonum* with the help of neat labeled diagram.
 - > Distinguish different types of Racemose inflorescence with the help of diagrammatic sketches and brief description of salient features of each type.
 - > Botanists classify inflorescences into three or four types. Nature doesn't obey our classification rules. Substantiate the two statements.

ility for the Course / Programme

It is one of the basic courses which is very helpful in understanding the fundamental concepts in cell biology as well as in diversity of life

47	Forest Botany	KU3DSCBOT208
Semester Hrs/weel	: 3 x : 3 Theory + 1 Practical	Credits : 4

- 1. Knowledge in Biology at 10th Standard
- 2. Completed the minor courses in the first two semesters
- 3. Ability to write examination in English

Course Outcomes

CO1	Knowledge in the basic concept and principles of forest botany.
CO2	Understanding the fields of application of botanical knowledge in the field of botan
CO3	Understanding the plant adaptations in forest ecosystem with an emphasis to Western
	Ghats.
CO4	Interpret the adaptive and protective mechanisms exhibited by plants in response to
	various environmental conditions.
CO5	Ability to apply the concepts in the field of evolution and diversity studies.

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	$\sqrt{}$									
CO2			\checkmark	$\sqrt{}$								
CO3				$\sqrt{}$		$\sqrt{}$						
CO4									$\sqrt{}$			
CO5										$\sqrt{}$		$\sqrt{}$

Course Description

This is a comprehensive course designed for UG students in general and BSc Zoology and BSc Forestry in particular for understanding the applications of botany in understanding forest ecosystems. It covers taxonomy and morphology of forest plants that equips students for sustainable forest management. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module gives glimpses of forestry and its relation with botany.
- Second module is an account on flora of Western Ghats and their adaptations.
- Third module emphasizes on forest trees of Western Ghats.
- Fourth module delves into the utilitarian aspect of forests.

This course will also provide opportunities to observe diverse forms of plant life in forests and will help in future entrepreneurship.

- 1. Understanding of the fundamental concepts in forest botany.
- 2. Concept development in basic structure and reproduction of forest plants.
- 3. Enable the student to appreciate bio diversity, sustainable development with the help of their core subject and subsidiary subject botany.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/enterpreneurship

(Credit	t Teaching Hours			Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	1	4	3 + 0 + 2 (45 + 0 + 30)	5 (75)	35 (25T+10P)	65 (50T+15P)	100	

COURSE CONTENT

Module 1. Introduction to forestry 10 Hrs

Definition, role direct and indirect benefits. General account on forest types in the World. Classification, Status and distribution of forests, with special reference to India. Comparative primary productivity of different types of forest ecosystems in the world. Basic concepts on Forest types of India and Kerala Champion & Seth Revised system of classification

Module 2. Diversity of plants in forests in Western Ghats 10 Hrs

Types of plant forms in tropical rain forests-Trees, Herbs, Shrubs, Creepers, Lianas, Twiners, Epiphytes. Annuals, Biennials, Perennials. Major plant groups- bryophytes, Pteridophytes, gymnosperms and angiosperms. Adaptation in forest environment-Structure of leaves, stem wood, bark and roots in trees, Adaptations with special reference to shade tolerance, leaf modifications, Root systems, seed dispersal mechanisms, epiphytic adaptations and mycorrhiza associations

Types of woody plants. Comparative wood anatomy of gymnosperms and angiosperms. Soft wood and hardwood. Dendrochronology and Dendroclimatology.

Module 3. Major forest trees of Western Ghats 10 Hrs

Concept of Endemic and RET plants. Significance, Threats and consequences of loss. Red data book, An overview of major RET and Endemic trees of Western Ghats. Role of vegetative characters in identification of forest trees- the bole, buttresses, flute, leaf characters, colour of younger and older leaves, characteristic of bark, blaze and exudations. Tree identification and classification based on morphology of stem and leaves and architecture. Tree forms, shapes and architecture. Importance scope of dendrology

Module 4. Useful Forest products and plants 10 Hrs

Major Timbers, Non timber forest products- bamboo and canes, resins, tannins, honey, Forest products and their utilization in industries and entrepreneurships An overview of Gadgil Committee Report, Oommen V Ommen report.

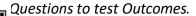
Module 5. TEACH Space 15 Hrs

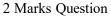
This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Collection of forest products.
- 2. Visit to forest area and document the diversity.
- 3. Collect news and photographs regarding the forest.
- 4. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics-Theory

- 1. Vegetation types of India
- 2. Types of products and their documentation


Suggested Assignment Topics- Practical


- 1. Microphotographs of all practical works
- 2. Collection documentation and classification of diverse forms of plant life in forestry.

Sugg	Suggested readings specific to the module.						
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.					
No							
1	Shanmughavel P, 2014. Forest Botany, Pointer Publishers 1, 2, 3,4						
2	Negi S S, 2012. Forest Botany, Bishen Singh Mahendrapal Singh 1, 2, 3, 4						
3	Sarmah D, 2024. Distribution of trees across the Western Ghats in	2, 3, 4					
	Karnataka, Notion Press.						
4	Pullaiah, T., 2024. Biodiversity Hot Spots of the Western Ghats and	2,3					
	Srilanka, CRC Press.						
5	Mukherjee, P, 2016. Flora of the Southern Western Ghats and Palnis,	2, 3					
	Niyogi books.						
6	Bor, N. L. (1953). Manual of Indian forest botany. Manual of Indian forest	2, 4					
	botany.						
7	Sivanna, H, 2012. Handbook on Forest Biology, Discovery Publishing	1, 2, 3, 4					
	House						
8	Raj, A J., 2013. Forestry Principles And Applications, Scientific Publishers	1,2, 3,4					
Core	Compulsory Readings						
1	Grebner D.L., 2024. Introduction To Forestry and Natural Resources, Elsevie	er.					
2	Burton, L D, 2019. Introduction To Forestry Science, Cengage India.						
Core	Core Suggested Readings						
1	Sterck, F., & Turnbull, C. (2005). Woody tree architecture. Annual Plant Revi	ews, Plant					
	Architecture and its Manipulation, 17, 210-237.						
2	FAO. (2015). *Global Forest Resources Assessment*. Rome: FAO of United	Nations.					

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS							
End Semester Evaluation ESE							
University Examination-Theory							
Practical Examination	15						
Continuous Comprehensive Assessment CCA							
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	15						
Writing assignment/ Seminar presentation	10						
Practical Examination + Laboratory reports	10						

Define Forest Botany

- > Give the botanical name and peculiarities of good timber
- Expand RET. Give an example from Western Ghats
- Differentiate Woods from forests

3 Marks Questions (Applying and Analyzing):

- Analyse the major reasons to consider Western Ghats as Biodiversity hot spot?
- List out the major reasons for the deterioration of Western Ghats and explain.

5 Marks Questions (Evaluating and Creating):

- > Critically comment on Gadgil Committee Report and Add a note on the strategies that can be used to manage Western Ghat's biodiversity.
- Give a detailed account on different landscapes and forest types present in Western Ghats.

Employability for the Course / Programme

It is one of the advanced courses which is very helpful in understanding the diversity of plant life

1	Plant D	KU1MDCBOT101	
MDC	Semester: 1	Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes								
CO1	Acquisition of basic knowledge in botany.								
CO2	O2 Understanding of the major terms used in botany and the way of scientific description of diverse forms of life.								
CO3	Understanding the basic differences that exist among diverse groups of plants.								
CO4	Ability to apply the concepts gathered in this course to move forward in botanical studies.								
CO5	First-hand experience in viewing the diversity using laboratory procedures and there by induction of enthusiasm in biological studies.								

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	$\sqrt{}$	\checkmark									
CO2			\checkmark		\checkmark	$\sqrt{}$						
CO3						$\sqrt{}$						
CO4									\checkmark	$\sqrt{}$		
CO5											$\sqrt{}$	V

Course Description

This is an introductory biology course designed for all UG students who are interested in botanical studies in future and presently are having a shallow knowledge in the field of biology. The aim of the course is to give basic knowledge about botany and the diversity of plant life forms.

- First module gives details on branches of botany
- Second module focuses on the classification of plants
- Third module gives a detailed account on vegetative morphology of angiosperms.
- Fourth module is a brief account on the reproductive morphology of angiosperms.

This course will also provide opportunities to observe diverse forms of plant life of lower groups including fungi, during theory and laboratory sessions designed by the teacher.

- 1. Understanding of the fundamental nature of science, namely botany.
- 2. Concept development in identification, description and classification of plants.
- 3. Enable the student to appreciate bio diversity for sustainable development.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship.

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	0	3	3 + 0 + 0 (45 + 0 + 0)	45	25	50	75	

COURSE CONTENT

Module 1. Botany as a science 8hrs

Botanical History: Contributions of eminent botanists: Theophrastus and Carl Linnaeus. Indian contributors- Itty Achudan and Van Rheed. E K Janaki Ammal, M S Swaminathan. Plants and their value- economic-food and fibre, timber- both natural and processed; medicinal- drugs and medicines; aesthetic - in gardening and landscaping; ecological - Producer and habitat for several organisms.

Module 2. Classification of Plants 6 hrs

Herbs, shrubs, trees, climbers, creepers, twiners, epiphytes and parasites. Annuals, biennials, and perennials.

Distinguishing features of major plant groups with an emphasis to vegetative morphology and prominent reproductive features- Algae, Bryophytes, Pteridophytes, Gymnosperms and Angiosperms.

Module 3. Vegetative morphology of Angiosperms 6hrs

Roots- Morphological Structure, function and Modifications-tubers (carrot), prop root (*Ficus*), stilt root (*Rhizophora*) and pneumatophores (*Avicennia*)

Stem- Morphological Structure –node- internode; Modifications- phylloclade (*Opuntia*), cladode (*Asparagus*), tuber (potato), rhizome (ginger).

Leaves- Basic morphology- Phyllotaxy- alternate, opposite, whorled. Venation- Parallel and reticulate. Modifications.

Module 4. Reproductive morphology Angiosperms 10 hrs

Flower- parts- calyx, corolla, androecium, gynoecium. Trimerous, tetramerous and pentamerous flowers with examples. Aestivation - Valvate (in calyx- *Hibiscus*) Twisted (in corolla- *Hibiscus*), Vexillary (*Clitoria*).

Inflorescence – Racemose, Cymose, Special and Mixed types. Raceme – in *Crotalaria*, *Caesalpinia*, Sunflower, *Anthurium*, Coconut. Cymose- Jasmine and *Hamelia*. Special-Euphorbia, Ficus. Mixed- Ocimum, Clerodendrum panniculatum.

Fruits- Simple- Berry- Tomato; Drupe- Coconut; Aggregate- *Polyalthia*; Multiple fruit-Jack fruit.

Seeds- General structure. Dicot and Monocot. Germination- Hypogeal and epigeal germination.

Module 5: TEACH Space 15 hrs (Only suggested list of topics and activities; that helps to achieve the aim, objectives and outcome of the course, which can be finalized by the concerned teacher. Assessment for this module is *strictly internal*.)

Research potentials in Botany 2 hrs

Branches in Botany- Taxonomy, Morphology, Anatomy, Physiology. Pure and Applied Branches. Interdisciplinary and Multidisciplinary branches- with major applications of these branches.

Brief Account and Research potentials in: Plant systematics, Ecology, Plant anatomy, Plant physiology, Genetics, Ethnobotany, Crop improvement & Plant genetic engineering.

Practicals 13 hrs. This module is a list of suggested activities; which will be determined by the concerned teacher.

- 1. Reading on *Hortus Malabaricus*, Contributions of E K Janaki Ammal, Green revolution, and Life history and achievements of MS Swaminathan.
- 2. Observation of diversity in vegetative characters in the premises.
- 3. Documentation of diversity in flowers, inflorescences, fruits and seeds; in the premises.
- 4. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Sugg	gested readings specific to the module.						
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.					
No							
1	Gangulee, S.C., Das, K.S., Dutta, C.D., & Kar, A.K., (1968). College Botany Vol. I, II and III. Central Education Enterprises.	1, 2, 3, 4					
2	Manilal, K.S. (2003). <i>Van Rheede's Hortus Malabaricus. English Edition</i> , with Annotations and Modern Botanical Nomenclature. (12 Vols.) University of Kerala, Trivandrum.						
3	Iyer R D, 2021. M S Swaminathan						
4	Dutta A C, (2000). A class book of botany, Oxford University Press.						
5	Suresh Narayana P and T. Pullaiah, 2021. Eminent Indian Botanists: Past	1					
	and Present Biographies and Contributions, Regency Publications.						
Core	e Compulsory Readings						
1	Baker. H.G. 1970. Plant and Civilization, Wadsworth Publishing Compan	у					
2	Hait, G., 2023. Introductory Botany Vol – II, Asian Humanities Press, C Publication.	Global net					
3	Hait, G., 2024. INTRODUCTORY BOTANY - II: Morphology and Reproduction of Spermatophytes, Asian Humanities Press, Global net Publication.						
Core	e Suggested Readings						
1	Starr, C., (2007). Biology: concepts and applications. VI edn. Thomson Press	S.					
2	Raven, P.H., Evert, R.F., & Eichhorn, S.E., (2013). Biology of plants. VIII th Freeman Publishers.	Ed. W.H.					

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION				
Hands-on experiments	Lecturing				
Collaborative learning-Group	> ICT				
discussion	Practicals				

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	10

Sample Questions to test Outcomes.

2 Marks Question

- What are the two main types of cells, and what distinguishes them from each other?
- List out any four features of fluid mosaic model of the cell membrane and its significance in cell biology.
- > Differentiate pit from pit fields
- ➤ What are the functions of plant roots?
- > Differentiate phycobiont from mycobiont with examples

3 Marks Questions (Applying and Analyzing):

- ➤ Using a diagram, illustrate the structure of a plant cell wall and explain its functions.
- ➤ The distribution and structure of chloroplast helps in the functioning of photosysntheis. Substantiate.
- Analyze the implications of the endosymbiotic theory for our understanding of cellular evolution.
- Explain the vegetative thallus of ascomycete fungi.

5 Marks Questions (Evaluating and Creating):

- ➤ Evaluate the impact of advancements in cell biology on modern scientific research and technology.
- ➤ Knowledge in biodiversity is highly essential for the economic growth and human welfare. Substantiate the statement.

Employability for the Course / Programme

It is one of the basic courses in botany that is very helpful in understanding the fundamental concepts in botany, diverse forms of plant life and their description as well as classification. It is one of the course designed for a better start of a botanical journey in academics.

2	Botany for the	KU1MDCBOT102	
MDC	Semester: 1	Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes								
CO1	CO1 Basic knowledge in botany								
CO2	Understanding of the terms, concepts and basic nature of botany and its applications in human welfare.								
CO3	Understanding the Ecological relations of plants.								
CO4 Application of the concepts of botany and knowledge in plant diversity in future activities and also for the profession.									

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	\checkmark	\checkmark									
CO2			$\sqrt{}$		$\sqrt{}$	$\sqrt{}$						
CO3						$\sqrt{}$						
CO4									\checkmark	V		

Course Description

This is a foundation course in botany designed for all UG students in general with an aim to give basic knowledge about plants, their diversity and diverse applications in human welfare.

- First module is emphasizing on the general classification of living forms.
- Second module is dealing with the description and classification of higher plants.
- Third module delves into the ecological roles of plants.
- Fourth module is giving an idea on the application of plant into various aspects of human life.

This course will also provide opportunities to observe diverse forms of plant life within the premises and will help to widen the knowledge in botany.

- 1. Understanding of the fundamental concepts in Botany.
- 2. Concept development in description and classification of plants.
- 3. Enable the student to appreciate bio diversity, sustainable development with the help of their core subject and subsidiary subject botany.
- 4. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/enterpreneurship

Credit		Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3 +0 + 0 (45 +0 +0)	45	25	50	75

CONTENT

Module 1. Living world

6 hrs

Concept of Living and Non Living: Origin of Life. Viruses, Bacteria, Fungi, Plants and Animals; Five kingdom Classification. General characters of major plant groups- Algae, Bryophytes, Pteridophytes, gymnosperms and angiospersm. Life cycle of angiosperms plants.

Module 2. Major features of Angiosperms 6 hrs

Typical angiosperm plant: Functions of each organ viz. Root, Stem, leaves, inflorescence, flowers, fruit and seed.

Flower: Basic structure - essential and non essential whorls. Trimerous, tetramerous and pentamerous flowers with examples. Aestivation - Valvate (in calyx- *Hibiscus*) Twisted (in corolla- *Hibiscus*), Vexillary (*Clitoria*).

Inflorescence – Racemose, Cymose, Special and Mixed types. Raceme – in *Crotalaria*, Sunflower, Cymose- Jasmine. Special- Ficus. Mixed- Ocimum.

Fruits- Simple- Berry- Tomato; Drupe- Coconut; Aggregate- Polyalthia; Multiple fruit- Jack fruit. Seeds- General structure. Dicot and Monocot.

Module 3. Ecological role of plants

Ecological Significance of Plants – Solar energy fixing Producers and Nitrogen fixation, Symbiotic relationships of plants – Lichens, Azolla and Blue green alga, Parasitism. Plants and Animals for pollination and seed/fruit dispersal- Pollination- Entomophily, Chiropterophily, Myrmecophily. Seed Dispersal: Zoochory, Specific case studies on examples for co evolution- Dodo and Calvaria, Butterflies

and plants; Wasps and Ficus, mimicking for pollinators.

Module 4. Applications of Plant biology 10Hrs

Agriculture-Crop improvement-weed control and management-Integrated pest management- plant propagation- intercropping- crop rotation- biofertilisers, biopesticides, Plant breeding- Medicine-Plant derived drugs in various systems of medicine- netraceuticals and pharmaceuticals.

Environmental management- Gardens and biodiversity conservation- Productivity and role in biogeochemical cycling. Green corridors and belts

Module 5. TEACH Space

(15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is strictly internal.

- 1. Collection, documentation and observation of plants in the premises.
- 2. Collection of information on role of plants in various aspects of human life.
- 3. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics- Theory

- 1. Group wise characters of plants
- 2. Life cycle of plants

Suggested Assignment Topics- Practical

1. Photographs of different plants in the premises

- 2. Microphotographs of all practical works
- 3. Collection documentation and classification of diverse forms of plant life

Sugg	Suggested readings specific to the module.				
Sl.	Title/Author/Publishers of the Book specific to the module	Module No.			
No	_				
1	Hait, G., 2023. Introductory Botany Vol – I, Asian Humanities Press,	1, 2, 3,4			
	Global net Publication.				
2	Sen K and P Giri, 2024. Fundamental Botany, Santra Publication Pvt Ltd	4			
3	Dutta A C, (2000). A class book of botany, Oxford University Press.	1, 2, 3, 4			
4	Gangulee, S.C., Das, K.S., Dutta, C.D., & Kar, A.K., (1968). College	1, 2,3, 4			
	Botany Vol. I, II and III. Central Education Enterprises.				
Core	Core Compulsory Readings				
1	Hait, G., 2023. Introductory Botany Vol – II, Asian Humanities Press, Global net				
	Publication.				
2	Hait, G., 2024. INTRODUCTORY BOTANY - II: Morphology and Reproduction of				
	Spermatophytes, Asian Humanities Press, Global net Publication.				
Core	Core Suggested Readings				
1	Starr, C., (2007). Biology: concepts and applications. VI edn. Thomson Press.				
2	Raven, P.H., Evert, R.F., & Eichhorn, S.E., (2013). Biology of plants. VIII th Ed. W.H.				
	Freeman Publishers.				

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination	50	
Continuous Comprehensive Assessment CCA		
 Examinations (multiple choice, true-false, fill-in-the- blank, matching, short answer and critical thinking questions) 	10	
Writing assignment	5	
Reports/ presentations/ demonstrations by the students		

Sample Questions to test Outcomes.

2 Marks Question

- ➤ What are the major features Kingdom Protista
- ➤ Define Primary Productivity
- 3 Marks Questions (Applying and Analyzing):
 - > Alga is a synthetic term to denote organisms belonging to different plant groups. Analyse.
 - > Basic knowledge about plants helps in improving human welfare. Give a short note.
- 5 Marks Questions (Evaluating and Creating):
 - > Plants are the dominating component of any ecosystems, that plays a key role in

Employability for the Course / Programme

It is one of the foundation courses which is very helpful in understanding the diversity of plant life and its application in various aspects of human life.

3	Beginner's Exploration to t	KU2MDCBOT103	
MDC	Semester: 2	Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes				
CO1	Ability to identify and describe the external morphology of a leaf and its parts.				
CO2	Appreciation of the significance of leaves in plant identification and classification.				
CO3	A comprehensive understanding the structure and function of flower and floral parts.				
CO4	Acquisition of basic knowledge in the stages of reproduction in flowering plants and their importance in plant life cycles.				
CO5	Ability to integrate their knowledge on leaf morphology, flower structure, and reproductive biology for further understanding of biology and ecology.				

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	V									
CO2		V		\checkmark								
CO3					√	$\sqrt{}$						
CO4							$\sqrt{}$					
CO5											1	V

Course Description

This is a foundation course designed for UG students in general and for BSc Zoology, BSc Microbiology and BSc Forestry in particular. This course provides a foundational understanding of structure, function and diversity among leaves and flowers into various studies in botany, ecology, and related fields and also for the application in bouquet making and other interior decorations.

- First module identifies and describes the external morphology of a leaf, including the blade (lamina), petiole, stipules, and veins.
- The second module provides an overview of the significance of leaves in plant identification and classification.
- *The third module focuses on the structure and function of flowers.*
- The fourth module covers flower development and reproduction.

In this course, participants have the opportunity to delve into a wide array of plant leaves and flowers.

- 1. To identify different types of plant leaves and flowers based on their unique characteristics.
- 2. To get a basic knowledge in classification of flowers and leaves based on their structures, functions, and other features.

- 3. To appreciate the vast diversity present in plant leaves and flowers, recognizing the range of shapes, sizes, colors, and adaptations that exist in the plant kingdom.
- 4. to apply their knowledge of plant leaves and flowers in real-world contexts, such as gardening, landscaping, bouquet making, interior decorations and plant conservation efforts.

Credit			Teaching H	ours	As	ssessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3 + 0 + 0 (45 + 0 + 0)	45	25	50	75

COURSE CONTENT

Bracts, Bracteoles.

Module 1: Basics of Leaf Structure, Function, and Diversity 8 hrs External Structure: Blade (Lamina), Petiole, Stipules and Veins.

Leaf Arrangements: Alternate, Opposite, Whorled: Leaf Diversity: Leaf Types: Simple Leaves: Compound Leaves: Leaf Shapes: Elliptical, Lanceolate, Ovate. Leaf Margins: Entire, Serrated, Lobed. An overview of leaf apices.

Internal Structure: Epidermis, Mesophyll, Palisade Mesophyll, Spongy Mesophyll and Stomata.

8 Hrs

Module 2: Leaf Diversity for various uses

Role of Leaf in plant Life: Photosynthesis, Gas Exchange, Transpiration, Guttation, Storage, Protection. Leaf Senescence and Colour changes during development with examples. A brief account on leaf pigments. Dye yielding leaves. Modifications of leaves. Reproduction from leaves. Modern methods of propagation using leaves. Leaf spray in agriculture and horticulture. Significance of Phylloplane and Phyllosphere..

Significance of Leaf study in various fields. Adaptations and leaves. Evolution and leaves. Taxonomy and Leaves. Role in Ecosystem Dynamics- Allelopathy, Humus formation and Soil biodiversity. Medicinal and cultural uses of leaves.

Module 3. Sex organ of angiosperms – the flower: Structure and Function 6 hrs Parts of a flower. Various types of flowers- based on symmetry, position of ovary, number of floral units, complete or incomplete, cohesion and adhesion. Inflorescences- Racemose, Cymose and Special and Mixed. Special structures –

Fruits and seeds the end products of sexual reproduction.

Module 4. Flower Development and Reproduction-8 Hrs

Flower/ inflorescence development stages: From bud to Anthesis, Pigments in flowers. Colour changing flowers. Adaptations for attraction of pollinators.

Fruit/Seed development and Fruit ripening and colour change. Diversity in dispersal of fruits and seeds.

Pollinators and Pollination mechanisms. Floral mimicry and deception. Fruit and seed dispersal and germination mechanisms with an emphasis to zoochory and germination with the help of animals. Case study- Rafflesia and elephant, Loranthus and Birds, Calvaria and Doddo.

Economic significance of flowers: Agriculture, horticulture, and floriculture. Medicinal and cultural uses of flowers.

Module 5. TEACH Space (15 hrs):

Theory: 5 hrs

Importance of leaves and flowers/inflorescence in various decorations- vase, wreath, garlands, stage arrangements, arch makings. Making methods. An overview of major flowers and leaves used in decorations- live and dead/preserved. Methods to increase the longevity and prevention of senescence. Wet and dry methods of preservations. Local case studies – during religious customs and ritual practices.

PRACTICALS 10 hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Microscopic observation of internal structure of leaf.
- 2. Observation and collection of different types of leaves.
- 3. Ecological variation in leaves.
- 4. Dissect out diverse flowers.
- 5. Students observe pollination in action by observing flowers in the college campus.
- 6. Organize symposium and workshops on floral decoration /bouquet making.
- 7. Visits to local farms or floral markets.

Suggested Assignment Topics- Theory/Practical

- 1. Leaf Morphology Comparative Analysis
- 2. Leaf Function Experiment Report
- 3. Leaf Diversity Field Guide
- 4. Taxonomic Classification Project
- 5. Ecosystem Dynamics Case Study
- 6. Leaf Identification Challenge
- 7. Flower Dissection Lab Report
- 8. Pollinator Observation Field Journal
- 9. Flowering Plant Life Cycle Diagram
- 10. Flowering Plant Classification Poster
- 11. Economic Importance of Flowers Presentation

Sugg	Suggested readings specific to the module.				
Sl.	Title/Author/Publishers of the Book specific to the module Module				
No					
1	Ollerton J, 2020. Pollinators and Pollination: Nature and Society, Pelagic	4			
	Publishing				
2	Hait, G., 2023. Introductory Botany Vol – I, Asian Humanities Press,	1, 2, 3,4			
	Global net Publication.				
3	Sen K and P Giri, 2024. Fundamental Botany, Santra Publication Pvt Ltd 1, 2, 3, 4				
4	Dutta A C, (2000). A class book of botany, Oxford University Press.	1, 2, 3, 4			
5	Gangulee, S.C., Das, K.S., Dutta, C.D., & Kar, A.K., (1968). College	1,2, 3, 4			
	Botany Vol. I, II and III. Central Education Enterprises.				
Core	Compulsory Readings				
1	"Botany for Gardeners: An Introduction and Guide" by Brian Capon				
2	"The Botany of Desire: A Plant's-Eye View of the World" by Michael Pollan				
3	"Plant Systematics: A Phylogenetic Approach" by Walter S. Judd, Christopher S.				
	Campbell, Elizabeth A. Kellogg, and Peter F. Stevens	_			

	-			
4	"Botany in a Day: The Patterns Method of Plant Identification" by Thomas J. Elpel			
5	"The Hidden Life of Trees: What They Feel, How They Communicate – Discoveries			
	from a Secret World" by Peter Wohlleben			
6	"Indian Herbalogy of North America: The Definitive Guide to Native Medicinal Plants			
	and Their Uses" by Alma R. Hutchens			
7	"Flowers of India" by Dinesh Valke			
8	"The Book of Indian Trees" by K. C. Sahni			
9	"Indian Medicinal Plants: An Illustrated Dictionary" by C.P. Khare			
10	Natália O. Leiner, André R.T. Nascimento and Céline Melo Plant Strategies For Seed			
	Dispersal In Tropical Habitats: Patterns And Implications - Tropical Biology And			
	Conservation Management – Vol. I - Encyclopedia of Life Support Systems (EOLSS)			
Core	Suggested Readings			
1	Abrol D P, 2012. Pollination Biology: Biodiversity Conservation And Agricultural			
	Production, Springer.			
2	Roberto Caballero, Elizabeth V. Reyes and Luca Invernizzi Tettoni, 2012. Decorating			
	with Flowers: A Stunning Ideas Book for all Occasions, Tuttle Publishing.			

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
Discussion	Practicals

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
Examinations (multiple choice, true-false, fill-in-the- blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	10

Sample Questions to test Outcomes.

- 2 Marks Question
- 1. How do the blade (lamina), petiole, stipules, and veins contribute to the external morphology of leaves?
- 2. What are the main components of leaf internal anatomy, and how do they facilitate leaf functions?
- 3. When might leaves exhibit different types of arrangements such as alternate, opposite, or whorled?
- 4. What are the primary functions of leaves, including photosynthesis, gas exchange, transpiration, storage, and protection?
- 5. How do simple and compound leaves differ, and what are some examples of each type
- 6. How do leaf shape and size serve as key identifying features in plant classification?
- 7. What are venation patterns in leaves, and when are they used for classification?
- 8. When are apex/base shapes of leaves important in identifying plant species

- 9. What is the significance of taxonomic classification in identifying plant families and genera?
- 10. Why are stamen, pistil, petals, and sepals essential reproductive structures in flowers?
- 11. When do flowers typically utilize wind, water, insects, and animals for pollination?
- 12. How do flowers adapt to different pollination mechanisms?
- 13. What are the stages of flower development from bud to fruit?
- 14. Why is it important to differentiate between pollination and fertilization in flower reproduction?
- 15. When does seed development and dispersal typically occur in the life cycle of a flowering plant?
- 16. How do adaptations in flowering plants contribute to their survival and reproduction

3Marks Questions (Applying and Analyzing):

- 1. Identify and describe the external morphology of a leaf, including the blade (lamina), petiole, stipules, and veins.
- 2. Explain the internal anatomy of a leaf, including the epidermis, mesophyll (palisade and spongy), and stomata.
- 3. Understand the functions of leaves, including photosynthesis, gas exchange, transpiration, storage, and protection.
- 4. Recognize different leaf types, such as simple and compound leaves.
- 5. Identify various leaf shapes, including elliptical, lanceolate, and ovate.
- 6. Describe different leaf arrangements, such as alternate, opposite, and whorled.
- 7. Differentiate between various leaf margins, including entire, serrated, and lobed.

5 Marks Questions (Evaluating and Creating)

- 1. Describe in detail the external morphology of a leaf, highlighting the significance of the blade (lamina), petiole, stipules, and veins. Explain how variations in these structures contribute to leaf diversity.
- 2. Discuss the internal anatomy of a leaf, including the epidermis, mesophyll (palisade and spongy), and stomata. Explain how each component facilitates leaf functions such as photosynthesis, gas exchange, and transpiration.
- 3. Compare and contrast simple and compound leaves, providing examples of each type and explaining their structural differences and potential advantages in various environments.
- 4. Analyze the diversity of leaf shapes, including elliptical, lanceolate, and ovate. Discuss the adaptive significance of different leaf shapes in relation to environmental factors and ecological niches.
- 5. Evaluate the importance of leaf arrangements, such as alternate, opposite, and whorled, in plant physiology and ecology. Discuss how different arrangements may reflect adaptations to specific environmental conditions.
- 6. Explain how leaf shape and size, leaf arrangement, and venation patterns serve as key identifying features in plant classification. Provide examples of how these features are used to classify different plant species.
- 7. Discuss the significance of taxonomic classification in plant biology, focusing on its role in identifying plant families and genera. Explain how taxonomic classification reflects evolutionary relationships among plants.

- 8. Analyze the functional adaptations of leaves to different environmental conditions, including structural modifications and physiological processes. Discuss how these adaptations enhance plant survival and reproduction.
- 9. Evaluate the ecological importance of leaves in ecosystem dynamics, including their role in primary productivity, nutrient cycling, and habitat provision. Provide examples of how leaves contribute to ecosystem services and biodiversity.
- 10. Discuss the potential impacts of environmental changes, such as climate change and habitat loss, on leaf diversity and plant communities. Evaluate strategies for conserving leaf diversity and promoting sustainable plant ecosystems.

Employability for the Course / Programme

"A Beginner's Exploration to the World of Leaves and Flowers" provides a gateway to various career paths within the realm of botany, horticulture, and environmental education. Graduates can find employment as botanical technicians, gardening assistants, floral designers, and nature educators, utilizing their knowledge of leaves and flowers to contribute to plant research, landscape design, and environmental advocacy.

4	Agrobio	KU2MDCBOT104	
MDC	Semester: 2	Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes							
CO1	Basic knowledge in agro-biodiversity.							
CO2	Understanding the historical context of plant and animal domestication.							
CO3	Appreciation of the ecological benefits provided by agro-biodiversity.							
CO4	Recognition of the critical role of agro-biodiversity in ensuring food security, nutrition, and its economic and cultural significance in agricultural systems.							
CO5	Understanding of the importance of agro-biodiversity in sustainable agricultural practices, fostering resilience and environmental sustainability in farming systems.							

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	POS8	POS9	POS10	POS11	POS12
CO1	$\sqrt{}$	$\sqrt{}$										
CO2			$\sqrt{}$									
CO3				\checkmark	$\sqrt{}$							
CO4								$\sqrt{}$	$\sqrt{}$			
CO5										V	V	V

Course Description

This course explores the variety and variability of plants, animals, and microorganisms used directly or indirectly for food and agriculture. It covers the concepts, importance, and conservation strategies of agro-biodiversity, focusing on sustainable agricultural practices and the impact of modern agricultural techniques.

- First module covers the fundamentals of Agro-biodiversity Introduction.
- The second module focuses on assessment and Threats to Agrobiodiversity.
- Third module deals with Sustainable Agricultural Practices
- Fourth module covers Modern Agricultural Technologies

In addition, this course offers practical sessions on model organisms, providing you with opportunities to explore a wide range of angiosperms and their diversity. By combining theoretical learning with hands-on experiences, the course offers a structured approach to comprehending agro-biodiversity, ensuring a holistic understanding of the subject matter.

- 1. Understand the concept and components of agro-biodiversity.
- 2. Recognize the importance of agro-biodiversity in sustainable agriculture.
- 3. Identify the threats to agro-biodiversity and strategies for its conservation.
- 4. Explore traditional and modern agricultural practices and their impact on agro-biodiversity.

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	0	3	3 + 0 + 0 (45 + 0 + 0)	45	25	50	75	

COURSE CONTENT

Module 1: Introduction to Agro-biodiversity 8Hrs

Definition and scope of agro-biodiversity, Components of agro-biodiversity: Genetic, species, and ecosystem diversity, Historical perspective on the domestication of plants and animals, Importance of Agro-biodiversity- Role in food security and nutrition, Ecological benefits: Soil health, pollination, pest and disease control, Economic and cultural significance. Rice varieties of Kerala and contribution of Cheruvayal Raman.

Module 2: Assessment and Threats to Agrobiodiversity 12 Hrs

Methods and tools for measuring agro-biodiversity, Species Richness, Genetic Diversity, Ecosystem Diversity, Agro-Ecological Methods. On-farm conservation vs. ex-situ conservation- On-farm Conservation-definition, advantages, challenges. Ex-situ Conservation: Conservation-definition, advantages, challenges. Modern agricultural practices: Monocultures, use of pesticides and fertilizers, Climate change and its impact, Habitat loss and degradation

Module3: Sustainable Agricultural Practices- Organic farming 5 Hrs

Agroforestry and Crop rotation and polycultures. Traditional Knowledge and Agrobiodiversity- Indigenous farming practices, Role of traditional knowledge in conservation, Case studies from different regions. PPVFRA and Concept of Genomic Saviours- Shaji -the tuber saver. Praseed Kumar Thayyil and Sunil Kumar M. of Wayanad district. John Joseph of Kozhikode district and Vinod E.R of Thrissur district.

Module 4. Modern Agricultural Technologies for Agrobiodiversity Management 5 Hrs GMOs and their impact on agro-biodiversity- Genetic erosion. Agricultural biodiversity management Strategies- Good agricultural practices to manage agricultural biodiversity-Species-based conservation- Area-based conservation- Ecosystem approaches- Creating a supportive environment- Improving the practice of conservation on the ground.

Module 5. TEACH Space (15 hrs):

Theory- 5 hrs

Successful agro-biodiversity conservation projects. Local initiatives- Kuttiattoor Geotagged Mango. Kannapuram and Kunhimangalam Mango movements. Shimjith Thillenkery and Curcuma varieties. Ezhome Rice Project.

Practical-10 hrs

Field Visits and Practical Work- Visits to local farms, botanical gardens, or research institutions. Hands-on activities: Seed saving, soil health assessment, biodiversity surveys

Sl.	Title/Author/Publishers of the Book specific to the module
No	
1	D. I. Jarvis, C. Padoch, and H. D. Cooper- "Agrobiodiversity: Managing Biodiversity in Agricultural Ecosystems"
2	Food and Agriculture Organization - "The Role of Biodiversity in Agriculture: Report of an FAO/UNEP Expert Consultation"
3	P. S. Teng - "Seeds of Sustainability: Lessons from the Birthplace of the Green Revolution in Agriculture"
4	S. K. Sharma, K. S. Varaprasad, P. S. S. Rao, S. A. Tarafdar, 2019. "Agrobiodiversity Hotspots: Concepts, Conservation and Management" Springer.
5	A.K.Kandya, 2015. "Agrobiodiversity and Sustainable Rural Livelihoods", Scientific Publishers.
6	P. R. Seshagiri Rao, 2004. Agrobiodiversity in India", Concept Publishing Company.
7	T. C. James, 2008. "Agricultural Biodiversity, Biotechnology and Traditional Knowledge: Biological and Legal Correlations", Academic Foundation.
8	B. S. Dhillon, B. S. Rana, R. K. Tyagi, 2002. "Managing Agrobiodiversity: Farmers' Changing Perspectives and Institutional Responses in the Hindu Kush-Himalayan Region", International Centre for Integrated Mountain Development (ICIMOD).
9	R. S. Rana, R. K. Tyagi, T. J. H. Renault, 1997. "Conserving Agricultural Biodiversity: The IPGRI Programme in Asia, the Pacific and Oceania", International Plant Genetic Resources Institute (IPGRI).
10	M.S. Swaminathan, 1996."Agrobiodiversity and Farmers' Rights", Konark Publishers Pvt. Ltd.
11	M.S. Swaminathan,2004. "Agrobiodiversity and Sustainable Agriculture", Academic Foundation.
12	M.S. Swaminathan and S. L. Kochhar, 2000. "Biodiversity and Sustainable Food Security: Exploring the Links", Macmillan India.
13	Nayar, N M (2011), "Agrobiodiversity in a biodiversity hotspot: Kerala State, India. Its origin and status", Genetic Resources and Crop Evolution, 58(1):55-82
14	Sunil Mani, S M Mohanakumar, V Santhakumar and T Abhilash, Conservation of Agrobiodiversity: Lessons from Kerala. https://practiceconnect.azimpremjiuniversity.edu.in/conservation-of-agrobiodiversity-lessons-from-kerala

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS	Marks				
End Semester Evaluation ESE					
University Examination					
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in-the- blank, matching, short answer and critical thinking questions)	10				
Writing assignment	5				
Reports/ presentations/ demonstrations by the students	10				

Sample Questions to test Outcomes.

2 Marks Question

- 1. What is agro-biodiversity?
- 2. What are landraces?
- 3. When is the International Day for Biological Diversity celebrated?
- 4. When did the Convention on Biological Diversity come into force?
- 5. Why is agro-biodiversity important for food security?
- 6. Why should traditional farming practices be preserved?
- 7. How can farmers contribute to the conservation of agro-biodiversity?
- 8. How does climate change impact agro-biodiversity?

3 Marks Questions (Applying and Analyzing):

- 1. Explain the role of agro-biodiversity in enhancing ecosystem services in agricultural landscapes.
- 2. Analyze the impact of monoculture practices on agro-biodiversity and suggest alternative practices that could mitigate these impacts.
- 3. Discuss how traditional agricultural knowledge contributes to the conservation of agro-biodiversity and provide an example.
- 4. Evaluate the effectiveness of in-situ conservation methods for agro-biodiversity compared to ex-situ conservation. Provide examples to support your evaluation.
- 5. How does agro-biodiversity contribute to climate change mitigation and adaptation in agricultural systems?

5 Marks Questions (Evaluating and Creating):

- 1. Evaluate the impact of global agricultural policies on agro-biodiversity and propose policy changes that could promote the conservation and sustainable use of agro-biodiversity.
- 2. Design a comprehensive community-based program to enhance agro-biodiversity in a rural agricultural setting. Outline key components, stakeholder roles, and expected outcomes.
- 3. Critically assess the role of modern biotechnology in agro-biodiversity conservation. Include potential benefits and risks, and suggest strategies for integrating biotechnology with traditional conservation methods.
- 4. Evaluate the role of agro-biodiversity in sustainable food systems and propose a

model for integrating agro-biodiversity into urban agriculture.

Employability for the Course / Programme

This foundation course on agro-biodiversity offers students a comprehensive understanding of the intricate relationships between agriculture, biodiversity, and sustainability. By delving into topics such as genetic diversity, ecosystem services, and conservation strategies, students gain valuable insights into the importance of maintaining diverse agricultural systems for food security and environmental resilience. Armed with this knowledge, graduates are well- prepared to pursue diverse career paths, from agricultural research and conservation to policy development and sustainable farming practices, thereby contributing significantly to the global efforts towards a more sustainable and biodiverse agricultural future.

5	Botani	KU3MDCBOT105				
MDC	Semester: 3	Semester: 3 Hrs/week: 3 Theory				

- 9. Knowledge in Biology at 10th Standard
- 10. Ability to write examination in English

Course	Course Outcomes								
CO1	Understanding of various types of documentations relevant to Botany.								
CO2	Skill in Botanical illustrations, Handicraft making, Photography techniques and making of herbarium								
CO3	Application of various skills and knowledge in life situations								
CO4	Appreciation of the use of plant parts in various handicrafts								
CO5	Designing of new handicrafts and illustrations using plants								

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	\checkmark	$\sqrt{}$									
CO2			\checkmark	\checkmark	\checkmark	\checkmark						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$

Course Description

This is an introductory biology course designed for all UG students who are interested in botanical studies in future and presently are having a shallow knowledge in the field of biology. The aim of the course is to give basic knowledge about botany and its applications as an art.

- First module is dealing with various types scientific illustration including botanical illustrations
- Second module is giving the information on Herbarium making
- Third module is composed of knowledge and understanding of various plant related handicrafts
- Fourth module is giving a direction towards photography.
- *Fifth module is an innovative space for teachers and students.*

This course will provide you opportunities to observe diverse forms of botanical arts along with practical sessions on various forms of botanical art and documentations,

- 1. Understanding of the fundamental concepts in classification of plants.
- 2. Concept development in structure and reproduction of lower plants.
- 3.Enable the student to appreciate bio diversity, sustainable development with the help of their core subject and subsidiary subject botany.
- 4. Explore traditional and modern documentation methods in botany.
- 5.Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship

	Credit Teaching Hours				Assessment		
L/T	P/I	Total	L/T/P	Total	CCA ESE Tot		Total
3	0	3	3+0+0 (45+0+0)	3	25	50	75

COURSE CONTENT

Module 1: Botanical illustration 10 Hrs

- 1.1 Scientific illustration- the world of Visual Science. Introduction and history- cave paintings of Paleolithic era. Anatomical illustrations of Herophilus. Botanical illustrations in *Hortus Malabaricus*.
- 1.2. Brief account on various types of scientific illustrations- Natural History illustrations and mappings, Restoration and illustration of extinct species, Forensic reconstruction of facial structures, Botanical illustrations, Models and images for Museum Exhibits, Infographics. Digital 3D models, animations and Videos. AI tools for Scientific illustration. Canva, Inkscape and Vectr.
- 1.3. Types of botanical illustrations. Basic characters and differences between the types-Botanical illustration, Botanical art, Flower paintings and plant portraiture. Tools and techniques. Pencil/Charcoal technique, Lavy ink technology, Water color, Gouache technique, Ecoline and Mixed types
- 1.4. Relevance and Significance of Scientific Illustrations: Advantages of botanical illustration over modern digital documentations and photographs. Linnaean Society of London and Jill Smithies Award.

Module 2: Herbarium art 5 Hrs

- 2.1. Herbarium-Introduction, Types of Herbaria- International, National, Local and Special with examples.
- 2.2. Tools and techniques used in process of making herbaria- Field visits and specimen collection, preparation, pressing, drying, poisoning, mounting, identification, labelling, cataloguing and storage.
- 2. 3. Major herbariums in India & world: Role and Importance of Herbarium. -Scientific & Aesthetic
- 2.4. Merits and Demerits of conventional Herbaria. Electronic / Digital herbarium- merits and demerits

Module 3: Plants and Handicrafts 5 Hrs

3.1 An introduction to relevance of plants in Handicraft making- Timber and non timber plants.

- 3.2. Conventional and modern innovative techniques and types of Handicrafts. Major plant parts used in handicraft making case studies root, stem, leaf, inflorescence, Flower, Fruit and Seeds. Vegetable printing and carving. Seed jewellery.
- 3.3., Interior decoration- various styles and their comparative account. Domestic, office, industry. Conventional occasions of interior decoration using plants. Modern life style and importance of plants in decoration.
- 3.4. Plant based handicraft industry in Kerala- conventional and modern. Major plants and their parts used in Handicraft making- Socio-economic relevance.

Module 4. Botanical Photography 10 Hrs

- 4.1History and Basics of photography, Basic principles of different camera with an emphasis to parts, basic function, aperture and shutter speed, auto and manual focus.
- 4.2. Digital photography-Introduction. Factors that influence the quality of photo. Resolution and Pixel, Lens quality, Capture medium and Capture format- A comparative account on various factors.
- 4.3, Types of cameras used in science and research. SLR and DSLR camera. Scientific photography-photomicrography. Digital photo editing-Photoshop. Understanding different file formats-TIFF, JPEG. Applications in research.
- 4.4 Aesthetics of photography. Important photographic journals.

Module 5. TEACH SPACE 15 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5Hrs

Microscopic photography and videography; Microphotography and Photomicrography Animation tools for cartoon making

Practical 10 Hrs

- 13. Preparation of 5 scientific illustrations of plants
- 14. Preparation of 5 herbarium sheets and making one wall framed herbarium
- 15. Preparation of different handicrafts from plant parts (minimum 5)
- 16. Vegetable carving and printing hands on experience
- 17. Microscopic photo taking sessions and learn basic picture taking using a digital camera
- 18. Photo editing using Adobe photoshop, using animation tool for plant growth description and seed germination and development
- 19. Leaf area determination using any mobile application soft ware

Suggested Assignment Topics- Theory

- 19. Botanical illustrations
- 20. Various formats of image storage and their characteristics
- 21. Photography basic aesthetics
- 22. Digital photo editing
- 23. LASER leaf printing

Suggested Assignment Topics- Practical

- 23. Botanical illustrations
- 24. Photography- Scenic and Microscopic
- 25. Digital photo editing
- 26. Science Poster making
- 27. Seed jewelry making

SI. No	Title/Author/Publishers of the Book specific to the module				
	Adams, B., (2022). Botanical illustrations: Valuable reference material for anyone				
1	interested in botany and nature.				
2	Blunt, W., and Stearn W. T., (2015). The Art of Botanical Illustration: An				
2	Illustrated History.				
3	Bridson Dm and L Forman. (2014). Herbarium Handbook				
4	Datta S K, (2015). Dry flowers technology: Dehydration of flowers, foliages and				
4	floral craft				
5	Gale L A, (2018). Botanical illustration: The complete guide. The Crowood Press				
	Ltd;				
6	Guner, I., 2019. Botanical Illustration from life, Editorial Parramon, Barcelona.				
	Gurdal Pamuklu, A., & Dursin, A., (2016). Botanical illustration techniques, Global Journal				
7	on Humanites & Social Sciences. [Online]. 03, pp 298-302. Available from:				
	http://sproc.org/ojs/index.php/pntsbs				
8	Hirsch, R.J (2017): Seizing the light: A social and Aesthetic history of				
0	photography. Routiedge.				
9	http://www.ibiblio.org/unc-biology/herbarium/courses/chpt31.html				
10	https://bsi.gov.in				
11	https://magazines.feedspot.com/nature_photography_magaz				
12	https://startupmission.kerala.gov.in/				
13	https://www.kew.org/				
14	https://www.pinterest.com/punkgirlabby/plant-crafts/				
15	https://www.princeton.edu/~ota/disk3/1984/8430/843009.PD				
16	https://www.researchgate.net/publication/355574340 Plant image				
17	https://www.startupindia.gov.in/				
18	Jain, S K and RR Rao (2016). Handbook of field and herbarium methods				
19	King, C., 2022. The Kew Book of Botanical illustration, Search Press.				
	Massey, J.R. (1974). Chapter 31: The Herbarium. In: Vascular Plant Systemics by				
20	A.E. Radford, W.D. Dickison, J.R. Massey & C.R. Bell). Harper & Row				
	Publishers.				
	Pandya G., MP Ranjan and Nilam Iyer (1986). Bamboo and cane crafts of				
21	Northeast India. Development Commissioner of Handicrafts, Govt. of India,				
22	National Crafts Museum.				
22	Peterson B (2009). Understanding close-up photography. Amphoto books.				
23	Rix, M., 2018. The Golden Age of Botanical Art, Welbeck Publishing Group,				
	ISBN: 9780233005423				
24	Taylor D, Lowe P, Sanders P and Hallet T, (2015). Digital photography complete				
	course, DK. Thiers, B. M, (202). Herbarium: The quest to preserve and classify the worlds				
25	plants				
26	Woodin C and Jess R, Botanical Art Techniques, Timber press.				
	Yadav, S.S. (2020). Herbarium: Historical account, significance, preparation				
27	techniques and management issues. <i>Plant archives</i> , 20(1), page:2915–2926.				
	1 cominguos and managoment issues. I tam aremves, 20(1), page. 2715-2720.				

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
 Hands-on experiments Collaborative learning- Group discussion 	 Lecturing ICT Practical sessions with demonstrations and hands on experiences

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination	50			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

- 2 Marks Question
- 1. Define herbarium.
- 2. How do botanical illustrations differ from botanical art?
- 3. List any four factors influence digital photo quality.
- 4. Name any two major herbaria and their significance.
- 5. What are the key steps in herbarium specimen preparation?
- 6. What are the main types of herbaria?
- 7. What is the significance of Paleolithic cave paintings in scientific illustration?
- 8. What role did Herophilus play in the history of anatomical illustrations? 6 Marks Questions
- 1. Analyze the role of plants in interior decoration across various styles and settings.
- 2. Describe different types of herbaria, and cite examples.
- 3. Describe the primary types of scientific illustrations
- 4. Describe the types of cameras and digital file formats used in science and research.
- 5. Evaluate how does the digital herbaria enhance botanical research and education.
- 6. What is *Hortus Malabaricus*? Add a note on the influence of this work in modern botanical illustration?
- 7. Write an account on the socio-economic relevance of plant-based handicrafts in Kerala. 7 Marks Questions
- 1. Describe the primary types of scientific illustrations. Add a note on the differences between botanical art and botanical illustrations.

- 2. Describe the tools and techniques used in the process of making herbaria. Add a note on any two major herbaria in India and their significance.
- 3. Examine the plant-based handicraft industry in Kerala, focusing on its traditional and modern aspects.
- 4. Explain digital photography and factors influencing photo quality.
- 5. Write an account on the advantages and disadvantages of conventional herbaria over digital herbaria.
- 6. Describe various types of conventional and modern innovative techniques in Handicrafts. 14 Marks Questions
- 1. Analyze the various types of scientific illustrations and their significance in modern science.
- 2. Compare and contrast the different types of botanical illustrations, focusing on their characteristics and techniques.
- 3. Describe the conventional and modern techniques in handicraft making using plant parts.
- 4. Discuss the evolution of scientific illustration from Paleolithic cave paintings to the anatomical drawings of Herophilus and the botanical illustrations in the *Hortus Malabaricus*.
- 5. Write an account on the history and basic principles of photography.

Employability for the Course / Programme

It is one of the challenging, for both teachers and students, and innovative course which is very helpful in understanding the diverse forms of plant utilization, mixed with the aesthetics and skill of the students to achieve the heights of entrepreneurship and self-employment and thereby provides a gateway to various career paths within the realm of botany.

6	Introductory Course on Applications of Botany		KU3MDCBOT106
MDC	Semester: 3	Hrs/week: 3 Theory	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes				
CO1	Understanding of various terms related to applied fields of Botany.				
CO2	Understanding various processes involved in applications of Botany				
CO3	Application of various knowledge in applied botany in the enhancement of life skills.				
CO4	Appreciation of the works of botanists and farmers in the sustenance of human population.				
CO5	Development of various innovations in the studies processes.				

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	\checkmark	$\sqrt{}$									
CO2			\checkmark	\checkmark	~	~						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$

Course Description

This is a general foundation course in botany course designed for all UG students. The aim of the course is to give basic knowledge regarding various applications of botany which is relevant in all aspects of human life.

- First module is giving an introductory idea regarding the plant life and its common uses in human life.
- Second module is helping the stake holder to get a knowledge on various applications of botany in agriculture.
- Third module deals with the applications of botany in the field of forestry.
- Fourth module is a module for the applications in environmental science, especially on pollution management and biofuel production.

This course will also provide you opportunities to observe diverse applications of plants in forestry agriculture and environmental science.

Course Objectives:

- 1. Understanding of the fundamental applications of botany various applied fields and human life.
- 2. Concept development in new fields of application.
- 3. Enable the student to appreciate bio diversity, sustainable development with the help of their core subject and subsidiary subject botany.
- 4. Explore traditional and modern applications of botany.
- 5. Induce to experiment on the subject in an intensive way to facilitate an interdisciplinary profession/enterprise/entrepreneurship

	Credi	it	Teaching H	[ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA ESE To			
3	0	3	3+0+0 (45+0+0)	3	25	50	75	

COURSE CONTENT

Module1: Introduction 8Hrs

- 1.1 Introduction, objective and importance of applied botany. History and evolution of botany. Various disciplines of botany and their applications to human welfare
- 1.2 Relation of plants to man and relation with other services- Cereals, Millets, Legumes, oil seed crops, forage crops, commercial crops, plantation crops, beverages crops, spices and condiments
- 1.3. Basic knowledge on plant growth- Plant propagation methods. Various irrigation methods. Fertilizers and nutrients required for plant growth
- 1.4 Basic knowledge on plant reproduction. Flowers /inflorescences- Parts of the flower, Types of pollination and pollinators. Seed setting, collection and storage.

Module 2: Agriculture and Botany 12Hrs

- 2.1. Soil fertility and Plants: Biological Nitrogen Fixation Symbiotic Nitrogen Fixation in Legumes, Azolla. Green manuring and Biofertilizers. Crop rotation. Herbicides and insecticides from Plants and microbes. Microbial herbicides, bacterial insecticides, entomopathogenic fungi.
- 2.2. Modern agriculture practices: Scientific farming and Organic farming. Polyhouse and Precision farming, Various types of soil less cultures and hydroponics. Seed manipulation for enhancement of germination.
- 2.3. Branches of Horticulture: Horticulture: definition and role in human welfare. Various types and their significance. Olericulture. Pomology. Viticulture. Floriculture. Turf Management. Arboriculture.
- 2.4. Plant tissue culture: Definition, types- callus culture, anther culture and embryo culture. and importance. rDNA Technology for insect resistance- Bt Cotton: for quality enhancement-Golden Rice and Flavr Savr tomato.

Module 3: Forestry and Botany 5Hrs

- 3.1 Forestry and branches of forestry. Significance of forests. Forests and Human welfare/
- 3.2. Forest types in India. tropical forest, subtropical forest, temperate forest and northern coniferous forest India is a megadiversity centre. Hot spots in India.
- 3.3. Timber products
- 3.4. Non timber products from forests with plant origin-honey, resin, gums, latex,

Module 4. Environmental Science and Botany 5Hrs

- 4.1. Various types of pollution and their impact on plants. Plants as pollution reducers- Green belt and green corridors. Bioremediation. Phytoremediation- Phytoextraction, phytostabilization, rhizofiltration.
- 4.2 Carbon foot print. Carbon Sequestration and Plants. Algae for the reduction of urban pollution- case study. Biodegradable plastics. Potent plant resources of bioplastics.
- 4.3. Plants as biofuels: significance, biodiesel, potent crops/algae for biofuel production, Agricultural waste management Waste minimization, utilization of agricultural wastes-biocomposting and biogas production.
- 4.4. IUCN and Red Data book. Threatened and Endangered plants of India.

Module 5. TEACH SPACE 15Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5 Hrs

Various case studies on recent application of plants in environmental science, agriculture and forestry.

Practical 10 Hrs

- 1. Documentation of local plants with applications in human life
- 2. Data collection on red listed plants
- 3. Visit to various waste management systems
- 4. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Suggested Assignment Topics- Theory

- 1. Agroforestry
- 2. Botany and Agriculture
- 3. Botany and forestry
- 4. Botany and Environmental Science

Suggested Assignment Topics- Practical

- 1. Practicing composting for domestic purposes
- 2. Collection and documentation of NTFP

Sl. No	Title/Author/Publishers of the Book specific to the module
1	Becca H, 2015. Plants Pollen and Pollinators, Collins. ISBN: 9780008163853.
2	Das K, 2025. Economic Botany. Mahaveer Publications
3	Dave R, 2022. Morphology of Flowering Plants. Lambert Academic Publishing
4	Khillar A K, 2024. History of Botany. Prashas Research Consulting Pvt Ltd.
5	Kumar N, 2021. Introduction to Horticulture. Medtech.
6	Malwa A S, 2025. Advanced Fundamentals of Agriculture (2 Vols), Narendra Publishing
	House
7	Manikandan K and Prabhu S, 2023. Indian Forestry. Jain Brothers.
8	Morton A G, 1981. History of Botanical Science: An Account of the Development of Botany
	from Ancient Times to the Present Day. Academic Press
9	Pandey B P, 1999. Economic Botany. S Chand Publications.
10	Prasad R L, 2012. Essentials of Economic Botany. Med Tech.
11	Reddy S R and Nagamani C, 2024. Introduction to Forestry. Kalyani Publishers

12	Sett R, 2012. Environmental Science a botanical and forestry perspective. Narendra
	Publishing House
13	Singh J, 2018. Fundamentals of Horticulture. Kalyani Publishers
14	Singh R and Singh B K, 2020. Text book on Horticulture. New India Publishing Agency, ISBN:
	9789389571776.
15	Walker, T. 2020. Pollination the enduring relationship between plant and pollinator.
	Princeton University Press.
16	Weberling F, 1992. The Morphology of Flowers and Inflorescences, Cambridge University
	Press.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination	50				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10				
Writing assignment					
• Reports/ presentations/ demonstrations by the students	10				

- 2 Marks Question
- 1. Define green corridor.
- 2. Differentiate flowers and inflorescences.
- 3. Enlist the botanical name of any two medicinal plants.
- 4. Explain the significance of anther culture.
- 5. Give an account on cereals and their significance.
- 6. Give any two examples for biodiesel yielding plants.
- 7. Name any two biodiversity hotspots in India.
- 8. Name any two methods of plant propagation using stem.
- 9. What are forage crops? Give an example.
- 10. What is Azolla's role in agriculture?
 - 6 Marks Questions

- 1. India is a megadiversity centre. Explain with evidences.
- 2. Give an account on different types of non-timber forest products of Kerala.
- 3. Write down the basic principles of phytoremediation.
- 4. Give a detailed account on biodegradable plastics.
- 5. Write down the salient features of mangrove forests India. 7 Marks Questions
- 1. Explain about the types of forests in India.
- 2. Give an account on various strategies to manage agricultural waste.
- 3. What is red data book? Explain the significance.
- 4. Define Carbon sequestration and describe its role in modern environmental management.
- 5. What are the features of Flavr Savr tomato and describe its significance. 14 Marks Ouestions
- 1. Give an account on different types of forest products in India.
- 2. Explain in detail on the types of forests in India.
- 3. Use of plants in environmental pollution management is inevitable. Explain with examples.
- 4. Modern horticultural practices are changing spontaneously. Explain the salient features of any five modern agricultural practices.
- 5. Nitrogen fixation and related processes are very much significant in scientific agriculture. Explain in detail.

Employability for the Course / Programme

It is one of the basic courses which is very helpful in understanding the diverse applications of plant life. It may help students to initiate various startups and self-employment opportunities in the nera future itself.

7	Microscopy and Visual	KU3MDCBOT107	
MDC	Semester: 3	Hrs/week: 3 Theory	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes
CO1	Explain the principles and applications of light and electron microscopy in plant sciences.
CO2	Understand the fundamentals of sample preparation for light and electron microscopy.
CO3	Understand the basic parts of microscope, both light and electron microscopy.
CO4	Create a scientific enthusiasm about the morphological and anatomical variation that exist among plants.
CO5	Understand how to use visualisation tools in plant systematics, anatomy, and morphology
CO6	Be familiar with the principles of digital imaging and image analysis used in the field of Botany

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark		
CO4								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
CO5									V	V	V	V
CO6										\checkmark	~	$\sqrt{}$

Course Description

This is a GFC course designed for all UG students for imparting the knowledge on microscopy, both theoretical and practical. The aim of the course is to give basic knowledge on this important tool of biology for the study of diverse life forms.

- *First module is a general introduction to the basic principles of microscopy.*
- Second module delves into the world of light microscopy, giving an idea on basic principles and also on various types of light microscopy.
- Third module is dealing with the basic principles and procedures in electron microscopy.
- Fourth module is an advanced module on visualization tools and image formation principles.

This course will also provide you opportunities to observe diverse imaging techniques in biology,

Course Objectives:

- 1. Understanding of basic terms and principles of microscopy.
- 2.Skill in working of microscopes for different applications
- 3.Skill in enhancing the image contrast and clarity
- 4. Enthusiasm to work with electron microscope

	Cred	it		eaching Hours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	0	3	3+ 0+ 0 (45+ 0 + 0)	3	25	50	75	

COURSE CONTENT

Module1: Introduction to microscopy and visualization techniques 8 Hrs

Basic parts, principles of image formation in microscopy. Importance of direct and diffracted light in image formation. Types of microscopes and their uses. Simple microscope. Compound microscope. Electron microscope. Stereomicroscope. Scanning probe microscope. Importance and applications of microscopy in biology, Fundamentals of digital imaging and image analysis-Conversion of analog to Digital image – merits and demerits.

Module 2: Light microscopy 10 Hrs

Principles and applications, Sample preparation, Slide preparation for plant anatomy, Microscopy for plant morphology. Protocol for Light Microscopy. Types of light microscopy: Bright field, Darkfield, Phase contrast, Differential interference. Sample preparation for various light microscopy. Visualization and documentation tools used in Light microscopy. Micrometry. Various types of errors in image formation in light microscopy- Chromic aberration and Spherical aberration. Deconvolution in light microscopy.

Module 3: Electron microscopy 7 Hrs

Principles and applications, preparing samples for electron microscopy, Imaging of ultrastructure of different plant cells, Types of electron microscopy- SEM and TEM and their comparison. Merits and Demerits of Electron microscopy.

Module 4. Image analysis and visualization 5 Hrs

Fundamentals of image analysis, Image analysis techniques for plant systematics and anatomy, Visualisation tools for plant morphology and development, Crowd sourcing-based visualisation and analysis methods

Module 5. TEACH SPACE 15Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5 Hrs

Various visualization applications available for biomedical studies

Basic principles and applications of X ray and various Scanning and imaging techniques

Practical 10 Hrs

- 1. Visit to labs with various imaging facilities
- 2. Demonstration of various microscopic techniques
- 3. Parts of Simple and Compound microscope

Suggested Assignment Topics- Theory

- 1.Light microscopy
- 2. Electron microscopy
- 3. History of microscopy
- 4. Principles of different microscopy
- 5. Applications of Microscopy

Suggested Assignment Topics- Practical

- 1.Demonstration of Parts of microscope
- 2.Documentation of different parts in various types of microscopy
- 3. Micrometry
- 4. Microscopic photography
- 5.Demonstration of microtomy
- 6.Camera lucida drawings

Sl. No	Title/Author/Publishers of the Book specific to the module
1	Chandler, D E and Roberson, R W, 2009. Bioimaging: current concepts in LM & EM 1st Edn.
	Jones & Bartlett Publishers, ISBN 978-0-7637-3874-7
2	Croft W J, 2006. Under the microscope, A brief history of microscopy. World Scientific Pub Co
	Inc
3	Fournier, M. 1996. The fabric of life: Microscopy in the seventeenth century. Johns Hopkins
	University Press.
4	Fulekar M H and Pandey B, 2013. Bioinstrumentation, Tech Sar Pvt Ltd
5	Rost, F and Oldfield, R, 2000. Photography with a Microscope. Cambridge: University Press.
6	Spector, D L and Goldman, R D, 2006, Basic Methods in Light Microscopy Cold Spring Harbor
	Lab Press, ISBN 978-0879-69751-8
	Thomas, C. and Woolnough, L. 2014. Understanding and using the light microscope. Milton
7	Contact Ltd.
8	Veerakumari L, Bioinstrumentation, MJP Publishers
9	Watkins, S C and Croix, C M, 2013. Imaging and Microscopy Wiley, ISBN 978-1-118-04431-5
10	Webster J G, 2003. Bioinstrumentation, Wiley.
11	White, G. W, 1966. Introduction to microscopy. Butterworth.
12	Woolnough, L. 2010. Understanding and using the Stereomicroscope. Q.M.C

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

	Marks				
End Semester Evaluation ESE					
University Examination					
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)					
Writing assignment	5				
 Reports/ presentations/ demonstrations by the students 	10				

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
Examinations (multiple choice, true-false, fill-in-the- blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Laboratory reports	5
Viva Voce	5

2 Marks Question

- 1. How does a compound microscope differ from a simple microscope?
- 2. List out the major differences between image magnification and resolution?
- 3. What are the advantages of using a scanning electron microscope (SEM)?
- 4. What is the purpose of the diaphragm in a microscope?

6 Marks Questions

- 1. Explain the principle and main components of a compound microscope.
- 2. Give an account on light controlling techniques used in light microscopy.
- 3. What are the major differences between SEM and TEM
- 4. Write an account on the principles and components of a scanning tunneling microscope (STM)?
- 5. Write down the salient features and significance of stereo microscope.
- 6. Describe the general steps involved in preparing plant tissue samples for microscopic examination.
- 7. Emphasize the importance of each step in preserving cellular structures.

7 Marks Questions

1. Compare and contrast the features and application of Light microscopy and Electron

microscopy.

- 2. Discuss the challenges faced during sample preparation for light microscopy.
- 3. Define chromatic aberration and spherical aberration in the context of light microscopy. Discuss their causes and methods to correct or minimize these errors.
- 4. Compare and contrast the two types of light microscopy: bright-field and phase contrast.
- 5. Evaluate the impact of different mounting media on the clarity and longevity of plant tissue slides under light microscopy.

14 Marks Questions

- 1. Compare and contrast simple and compound microscopes.
- 2. Describe the working principle of an electron microscope and its applications in biological research.
- 3. Discuss the importance of microscopy in biological research, including its role in cell biology and microbiology.
- 4. Compare and contrast the various types of light microscopy and highlight their advantages and limitations in observing plant tissues.
- 5. Outline the procedure for preparing microscope slides of plant tissues.

Employability for the Course / Programme

It is one of the courses that gives a foundation for the microscopic techniques through which a student can move forward through several career paths and enterpreneurships.

20	Gender: A Biolo	KU3VACBOT120	
VAC	Semester: 3	Hrs/week: 3 Theory + 0 Practical	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes
CO1	Understanding the biological basis of gender and various terms related to gender
	issues.
CO2	Appreciation of the existence of diverse human beings – LGBTQ+ instead of sexual
	binary.
CO3	Internalisation of political correctness on gender issues.
CO4	Modification of the individual character and behavior based on the knowledge and
	understanding of gender issues

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$			$\sqrt{}$	$\sqrt{}$							
CO2				\checkmark	\checkmark	$\sqrt{}$	\	$\sqrt{}$	$\sqrt{}$			
CO3							V		$\sqrt{}$			$\sqrt{}$
CO4								V	V	V	V	

Course Description

This is a value addition course in botany, designed for UG students. The aim of the course is to give basic knowledge biological basis of sex determination and gender issues.

- First module gives an idea about the concept of gender.
- Second module delves into the biological aspects of gender- the sex determination.
- Third module is an elaborate study on the major differences between the sexes in growth and development
- Fourth module is giving an opportunity to discuss various ethical aspects on gender.

This course will provide go through various case studies of gender identity and its linkage with societal characteristics.

Course Objectives:

- 6. To know various gender issue related terms
- 7. To understand the biological basis of gender
- 8. To create enthusiasm to know more on diverse human behaviours and biological basis of such behaviours.
- 9. To develop communication skills with more political correctness

(Credit		Teachin Hours	g	Assessment			
L/T	P/I	Total	L/T/P Total		CCA	ESE	Tot al	
3	0	3	3+ 0+ 0 (45+ 0 + 0)	3 (45)	25	50	75	

COURSE CONTENT

Module 1: Concept of Gender 7Hrs

- 1.1. Definition of Gender, Sex vs. Gender, Gender Identity and expression: Social construction of gender
- 1.2. History of concept of Gender- Myth of binary. History of feminism, Concept of Transgender and LGBTQ+, Concept of Intersectionality.
- 1.3. Basis of social construction of gender- Family and Gender, Religion and gender, Education and Gender, Ecology and Gender, Science and Gender
- 1.4. Need, scope and significance of Gender Studies. Nature vs. nurture debate

Module 2: Biology of Sex determination 8 Hrs

- 2.1. Basis of Heredity-General features of Chromosomes, Genes, and DNA
- 2.2. Role of Chromosomes in sex determination- XX -XY mechanism, Barr body, Genic Balance theory
- 2.3. Role of Molecules in sex determination: Role of hormones Estrogen, Testosterone, Progesterone
- 2. 4. Effects of sex hormones on the body and brain; Hormonal cycles and mood/behaviour (e.g., menstrual cycle, menopause, andropause); Hormonal influences on aggression, nurturing, and cognition

Module 3: Sexual Differentiation and Development 10Hrs

- 3.1. Sexual reproduction and development- Evolution of sex and mating strategies. Major variations in morphology, anatomy, and biochemistry between male and females. Variations in transgender
- 3.2. Embryonic development of sex organs- major stages and differences in male and female sex organ development.
- 3.3. Differentiation of the brain and behaviour. Mental health and gender (e.g., depression, anxiety, autism)
- 3.4. Role of SRY gene and androgen exposure. Intersex conditions (e.g., AIS, CAH)

Module 4. Ethical aspects of Gender 5Hrs

- 4.1. Misuse of biology to justify sexism or transphobia: Sex and gender based on biological essentialism. Misinterpretation of biological determinism over intersex.
- 4. 2. Ethical considerations in sex testing in sports: cases of Caster Semenya and Santhi Soundarajan.
- 4. 3. Gender verification and biomedical ethics: case of Maria José Martínez-Patiño.
- 4.4. Politics of biological research: Matilda effect, Neurosexism.

Module 5. TEACH SPACE (15 hrs):

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory: 5 hrs

Case studies on gender issues – in visual media, newspapers, television, cinema and social media. Human rights and Gender rights. Various laws and organizations and/or agencies in India on gender issue.

Practicals 10Hrs

- 1. Collection of data /reports on various aspects of gender
- 2. Discussions and debates on gender issues
- 3. Readings on religious texts and gender issues

Suggested Assignment Topics- Theory

- 24. Sex and intersex
- 25. History of the concept of gender
- 26. Concept of LGBTO+
- 27. Gender Vs. Science
- 28. Gender Vs religion
- 29. Local gender issues
- 30. Global issues of gender
- 31. Nature Vs Nurture

Suggested Assignment Topics- Practical

- 1. Discussions and debates on LGBTO+
- 2. Discussions and debates on religious thoughts and gender issues

Sl. No	Title/Author/Publishers of the Book specific to the module				
1	Butler J, 2004. Undoing gender. Routledge.				
	Dick F. Swaab,2007. Sexual differentiation of the brain and behavior, Best				
2	Practice & Research Clinical Endocrinology & Metabolism,				
2	Volume 21, Issue 3,Pages 431-444, ISSN 1521-690X,				
	https://doi.org/10.1016/j.beem.2007.04.003.				
3	Furlich S, 2021. Sex Talk: How Biological Sex Influences Gender				
3	Communication Differences Throughout Life's Stages.				
4	Hooks B, 1984. Feminist theory- from margin to centre. South End Press.				
5	https://nios.ac.in/media/documents/340-Gender_Studies/Ch-1.pdf				

6	https://ocw.mit.edu/courses/21a-231j-gender-sexuality-and-society-spring-							
ь	2006/pages/lecture-notes/							
	https://transreads.org/wp-content/uploads/2022/01/2022-01-							
7	13_61e080ae9cdfc_TheSpectrumofSexTheScienceofMaleFemaleandIntersexbyHidaVilor							
	iMariaNietoz-lib.org .pdf							
8	https://web.stanford.edu/~eckert/PDF/Chap1.pdf							
9	https://www.bba							
9	u.ac.in/docs/FoundationCourse/MPDC/understanding%20gender%20concepts.pdf							
10	https://www.egyankosh.ac.in/bitstream/123456789/84912/1/Unit-1.pdf							
11	https://www.ekvilib.org/wp-content/uploads/2017/06/01 Gender Concepts.pdf							
12	https://www.ncbi.nlm.nih.gov/books/NBK279001/							
13	https://youtu.be/HLEgiR1Fsds?si=g91NljbBWO7gILsw							
14	https://youtu.be/nU-rYQB_OjE							
15	https://youtu.be/UD9IOIIUR4k							
16	Kumar N, 2022. Gender and Science -studies across Cultures, Aakar Books							
17	Menon N, 2012. Seeing Like a Feminsit, Penguin Books							
	Michelle N. Arbeitman, Artyom Kopp, Mark L. Siegal, Mark Van Doren, The							
18	Genetics of Sex: Exploring Differences, <i>Genetics</i> , Volume 197, Issue 2, 1 June							
	2014, Pages 527–529, https://doi.org/10.1534/genetics.114.165456							
10	Paulson P J, 2019. Not a Choice: What You Weren't Taught About The Biology							
19	of Sex and Gender, Handsel Pulishers Ltd.							
20	Singh, L, Arya S, 2024. Feminist movements in India: Issues, Debates, Struggles,							
20	Aakar books.							
21	Stryker S, 2004. Transgender History, Seal Press.							
22	Watchtel S S, 1994. Molecular Genetics of Sex determination, Academic Press							
22	Inc.							
23	Woolf, V. 1929. A room of one's own. Penguin books.							

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
 Hands-on experiments Collaborative learning-Group discussion 	 Lecturing ICT Practical sessions with demonstrations and hands on experiences

ASSESSMENT RUBRICS		
End Semester Evaluation ESE		
University Examination		
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10	

•	Writing assignment				
•	Reports/ presentations/ demonstrations by the students	10			

2 Marks Questions

- 1. Define gender.
- 2. Differentiate between sex and gender with examples.
- 3.In what ways does education shape gender perceptions?
- 4. Name any two sex hormones in human beings with its functions.
- 5. What are intersex conditions? Provide two examples.
- 6. What is a Barr body and its significance?
- 7. What is biological essentialism?
- 8. What is intersectionality, and why is it important in gender studies?
- 9. What is Matilda effect,
- 10. What is meant by transphobia?
- 11. What is the SRY gene and its role in sexual differentiation?

6 Marks Questions

- 1. Briefly describe the connection between hormonal cycles and cognition.
- 2. Briefly explain the term 'neurosexism'.
- 3. Describe morphological differences between male and female bodies.
- 4. Describe the role of science in constructing gender norms.
- 5. Discuss gender differences in the prevalence of depression and anxiety.
- 6. Discuss the role of testosterone in the human body.
- 7. Explain gender identity and expression in the context of social construction.
- 8. Explain the XX-XY mechanism of sex determination.
- 9. How do hormones influence behavior and mood?
- 10. How does the family contribute to the social construction of gender?
- 11. How has biology been misused to justify sexism or transphobia?
- 12. Outline the evolutionary purpose of sexual reproduction.
- 13. Summarize the case of Caster Semenya in relation to gender testing.
- 14. Summarize the Genic Balance theory of sex determination.
- 15. What are the functions of estrogen and progesterone?
- 16. What hormonal changes occur during menopause and andropause?
- 17. What is the significance of the myth of binary in understanding gender?
- 18. Why is gender studies important in contemporary education?

7 Marks Questions

- 1. Briefly outline the historical development of feminism.
- 2. Discuss how religion influences gender roles in society.
- 3. Discuss the ethical issues in sex testing in sports by citing examples.
- 4. Give a detailed account on how sex hormones affect aggression and nurturing behaviors.
- 5. Give a detailed account on the stages of embryonic sex organ development.
- 6. How do politics intersect with scientific research on gender differences? Explain the condition by citing examples.
- 7. How does the brain differentiate in male and female development?
- 8. Why is ethical scrutiny essential in biological research on gender? Give specific examples.
- 9. Discuss the structural and functional relationship between DNA, genes, and chromosomes.

14 Marks Questions

- 1. Analyze the evolutionary origins of sexual reproduction and its impact on mating strategies across species.
 - 2. Analyze the mechanisms of sex determination in humans, focusing on the XX-XY system, the formation of Barr bodies, and the Genic Balance Theory.
 - 3. Critically examine the myth of the gender binary. How does this binary framework limit the understanding of gender diversity?
 - 4. Define transgender and LGBTQ+ identities. How have societal attitudes towards these identities changed, and what challenges remain?
 - 5.Describe the embryonic development of sex organs, highlighting the major stages and differences between male and female development.
 - 6. Discuss gender expression and its role in societal perceptions of gender. How does it differ from gender identity, and what challenges do individuals face when their expression does not conform to societal expectations?
 - 7. Discuss the history of feminism and its impact on the understanding of gender. What key movements have shaped feminist thought?
 - 8. Discuss the importance of gender studies in contemporary society. What insights does this field provide into human behavior and social structures?
 - 9. Elaborate on the concept of gender identity. How does it relate to an individual's internal sense of self, and what factors influence its development?
 - 10. Examine the roles of estrogen, testosterone, and progesterone in sexual differentiation and reproductive health.

Employability for the Course / Programme

It is one of the challenging, for both teachers and students, general foundation course which is very helpful in understanding various aspects of gender. It adds flavors to the character and behaviors of the stakeholder through the knowledge of biology behind the gender disparities.

21	Sustainable I	KU3VACBOT121	
VAC	Semester: 3	Hrs/week: 3 Theory + 0 Practical	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes					
CO1	Understanding of the Core Concepts of Sustainability and the SDGs					
CO2	Analyze Personal and Collective Environmental Footprints					
CO3	Adopt and Promote Sustainable Practices in Energy and Water Use					
CO4	Demonstrate Mindful Consumption in Food and Product Choices					
CO5	Evaluate the Multidimensional Benefits of a Sustainable Lifestyle					

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$								
CO2				$\sqrt{}$		\checkmark						
CO3					$\sqrt{}$	\checkmark	\checkmark					
CO4								\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$
CO5						√	√				1	V

Course Description

This is a general foundation course in botany/plant science designed for UG students. The aim of the course is to give basic knowledge on sustainable life style and its various reflections in daily life.

First module is an introduction to the concept of sustainability.

Second module deals with various tools and techniques of environmental footprint analysis. Third module and forth module gives a clarity in the core area- the sustainable life style.

This course will also provide an opportunity to learn the theoretical background of sustainable life style which can be applied into various aspects of daily life.

Course Objectives:

- 1. To introduce the fundamental concepts of sustainability.
- 2. To familiarize learners with global sustainability initiatives.
- 3. To equip learners with the knowledge and tools to measure and analyze environmental footprints.
- 4. To promote the adoption of sustainable lifestyle practices.

	Credit	ţ	Teaching	Hours	As	sessment	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+ 0+ 0 (45+ 0 + 0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to concept of sustainability: 8Hrs

- 1.1. Definition, features and significance of sustainability in contemporary society.
- 1.2. Understanding the interconnection between environmental health, social equity, and economic viability.
- 1.3. UNESCO and SDGs. Exploration of the SDGs and their relevance to personal and community practices.
- 1.4. Principles of 3R's. reducing, reusing, and recycling.

Module 2: Environmental Footprint Analysis 9Hrs

- 2.1. Major environmental footprints- carbon, water, energy, material and waste footprints.
- 2.2. Methods to assess personal footprints. Steps in Conducting an Environmental Footprint Analysis
- 2.3. Tools and calculators for evaluating the impact of daily activities on the environment.
- 2.4. GHG Protocol, Life Cycle Assessment (LCA), Water Footprint Network tools, Ecological Footprint Calculator.

Module 3: Sustainable life style – Energy, water and Renewable Resources 10Hrs

- 3.1. Techniques for reducing energy consumption in households and communities. Use energy-efficient appliances.
- 3.2. Introduction to renewable energy sources such as solar, wind, and hydroelectric power. Merits and Demerits on the transition from fossil fuels to sustainable energy solutions.
- 3.3. Importance of water conservation in sustaining ecosystems and human populations. Understanding water scarcity issues and global disparities in water access.
- 3.4. Practical methods for reducing water usage in daily activities. Fix leaks, install low-flow fixtures; Rainwater harvesting- principles and types; Use water-efficient practices in gardening.

Module 4: Sustainable life style – food and other consumables 9Hrs

- 4.1. Impact of food production and consumption on the environment. Significance of more plant-based foods and local and organic produce.
- 4.2. Reducing food waste through mindful purchasing and consumption practices. Go zero-waste or low-waste
- 4.3. Significance of fair trade, cruelty-free, and eco-certified products. Strategies for mindful consumption, emphasizing quality over quantity. Understanding the lifecycle of products and their environmental impacts.

4.4. Benefits of sustainable life style- Environmental, Economic, Health and Social

Module 5. TEACH SPACE 9Hrs:

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 3Hrs

Role of community initiatives in promoting sustainable practices. Strategies for effective advocacy and policy influence on sustainability issues. Building networks for collective action towards sustainability goals.

Practicals 6Hrs

Sustainability Reflection Journal: Maintain a weekly journal reflecting on how sustainability connects with daily life (e.g., transport choices, food habits, etc.).

SDG Mapping Activity: Choose 2–3 Sustainable Development Goals and map how individual or community actions can contribute to each goal.

3R Audit at Home or Campus: Conduct an audit of daily waste produced and categorize it into items that can be reduced, reused, or recycled. Present findings with a suggested action plan.

Food Waste Diary: Track food waste for one week. Analyze patterns and suggest changes to reduce waste (e.g., meal planning, composting).

Zero-Waste Shopping Challenge: Visit a local market or store and attempt to make a plastic-free or zero-waste purchase. Report the experience and barriers faced.

Product Lifecycle Analysis: Choose a common product (e.g., T-shirt, mobile phone) and analyze its lifecycle—from raw material extraction to disposal. Discuss environmental impacts and alternatives.

SI. No	Title/Author/Publishers of the Book specific to the module				
1	Bawa S K, 2011. Conservation Biology: A Primer for South Asia, Universities Press (India), ISBN: 978-8173717246				
2	Belsare D K and Singh R K, 2019. Biology and Management of India's Wildlife, Himalaya Publishing House, ISBN: 978-93-5299-803-6				
3	https://openknowledge.fao.org/server/api/core/bitstreams/ecb51a59-ac4d-407a-80de-c7d6c3e15fcc/content				
4	https://unesdoc.unesco.org/ark:/48223/pf0000388948				
5	https://www.researchgate.net/publication/313712783_Water_for_Food Water for Life Comprehensive Assessment of Water Management in Agriculture				
6	Raman A, 2024. Wildlife Ecology and Conservation, Scientific Publishers, ISBN: 978-8172339746				
7	Singh V, 2023. Biodiversity: Concepts, Crises, and Conservation. New India Publishing Agency, ISBN: 978-8119002351.				
8	https://www.unesco.org/en/sdgs				
9	Lee M B, 2022. The Carbon Footprint of Everything, Greystone Books.				
10	Muthu S K, 2020. Carbon Footprints: Case Studies from the Building, Household, and Agricultural Sectors, Springer.				
11	Chancel L, 2020. Unsustainable Inequalities: Social Justice and the Environment, Harvard University Press.				

12	https://alison.com/course/principles-of-eco-friendly-living
13	https://www.futurelearn.com/courses/introduction-sustainability-development
14	https://www.edx.org/learn/sustainability
15	Sharma R K, Son, S and H J Ghunman, 2024. Green Consumption and Sustainable Lifestyle: Evidence from India, https://www.mdpi.com/2076-3387/14/10/262

TEACHING LEARNING	MODE OF TRANSACTION
STRATEGIES	
Hands-on experiments	Lecturing
Collaborative learning-Group	ICT
discussion	Practical sessions with demonstrations and
	hands on experiences

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
Reports/ presentations/ demonstrations by the students	10

- 2 Marks Question (Understanding)
- 1. Define Life Cycle Assessment (LCA).
- 2. Define sustainability.
- 3. Define water footprint and discuss its significance.
- 4. How can households reduce energy consumption?
- 5. How do the 3Rs contribute to sustainability?
- 6. How does UNESCO contribute to the promotion of SDGs?
- 7. List two features of sustainable development.
- 8. What is the Ecological Footprint Calculator?
- 9. What is the GHG Protocol?
- 10. Why is sustainability significant in contemporary society?

6 Marks Questions (Applying and Analyzing):

- 1. Define the principles of the 3Rs and their role in sustainability.
- 2. Describe waste footprint and its implications for the environment.

- 3. Explain the global disparities in water access and their implications.
- 4. How do energy-efficient appliances contribute to sustainability?
- 5. How does UNESCO contribute to the promotion of SDGs?
- 6. Identify and explain the key features of sustainability.
- 7. Provide examples of how individuals can apply the 3Rs in their daily lives.
- 8. What is a carbon footprint, and how can it be reduced?
- 9. Why is sustainability crucial in today's global context?
- 10. Outline methods individuals can use to assess their environmental footprints.
- 7 Marks Questions (Evaluating and Creating):
- 1. Briefly describe the environmental, economic, health, and social benefits of adopting a sustainable lifestyle.
- 2. Discuss the interdependence of environmental health, social equity, and economic viability in sustainable development.
- 3. Discuss tools available for evaluating the environmental impact of daily activities.
- 4. Explain how the SDGs can be integrated into personal and community practices.
- 5. Explain the GHG Protocol and its role in measuring greenhouse gas emissions.
- 6. Outline methods individuals can use to assess their environmental footprints.
- 7. Provide an overview of renewable energy sources such as solar, wind, and hydroelectric power
- 8. What is material footprint, and why is it important in sustainability?
- 9. What is sustainability, and how does it differ from sustainable development?
- 10. Write an account on the advantages and disadvantages of transitioning from fossil fuels to renewable energy solutions.
- 14 Marks Questions (Evaluating and Creating):
- 1. Describe the principles and types of rainwater harvesting systems.

 Discuss the environmental, economic, health, and social benefits of adopting a sustainable lifestyle
- 2. Discuss tools available for evaluating the environmental impact of daily activities.
- 3. Evaluate the relevance of the SDGs to personal and community practices in achieving sustainability.
- 4. Explain techniques for reducing energy consumption in households and communities.
- 5. Explain the principles of the 3Rs and their importance in reducing environmental impact.
- 6. Give an account on practical methods for reducing water usage in daily activities.
- 7. Highlight a global initiative that has successfully promoted sustainability and its impact.
- 8. Provide examples of how individuals can apply the 3Rs in their daily lives to promote sustainability.

Employability for the Course / Programme

It is one of the foundation course that provide an environmental kinship for the stakeholders. It is very helpful in understanding the diverse actions that can be used for a sustainable lifestyle; giving an career opportunity as an environmentalist.

22	Conservation I	KU3VACBOT122	
VAC	Semester: 3	Hrs/week: 3 Theory	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes					
CO1	Understand Core Principles of Conservation Biology					
CO2	Identify Threats to Biodiversity					
CO3	Evaluate Conservation Strategies and Policies					
CO4	Apply Conservation Thinking to Real-world Scenarios					
CO5	Develop Ethical and Sustainable Attitudes toward Nature					

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1		$\sqrt{}$	$\sqrt{}$									
CO2				\checkmark	$\sqrt{}$	√						
CO3						$\sqrt{}$						
CO4									√		$\sqrt{}$	$\sqrt{}$
CO5												V

Course Description

This is a value addition general foundation course in botany/plant science designed for all UG students in general. The basic aim of the course is to give an idea on conservation biology.

First module deals with the fundamental ideas and concepts on conservation biology.

Second module is giving an account on the basics of biodiversity concept.

Third module is related to the theoretical background of tools and techniques used in conservation biology.

Fourth module is giving a comprehensive account on policies, laws and actions on conservation biology.

This course will also provide you opportunities to observe diverse aspects of conservation biology.

Course Objectives:

- 1.To understand the scope and ethical foundations of conservation biology
- 2.To examine the importance and methods of biodiversity conservation
- 3.To apply tools and techniques for biodiversity monitoring

4. To analyze the merits and demerits of conservation laws, policies, and global agreements in the present conditions of man-wildlife conflict.

	Credit		Teaching	Hours	Assessment			
L/T	P/I	Total	L/T/P Total		CCA	ESE	Total	
3	0	3	3+0+0 (45+0+0)	3 (45)	50	25	75	

COURSE CONTENT

Module1: Fundamentals of conservation biology: 7Hrs

- 1.1.Definition and scope of conservation biology. Ethical and philosophical foundations of conservation efforts. Branches of conservation biology.
- 1.2. Types of conservation strategies: In situ conservation: protected areas, habitat restoration. Ex situ conservation: zoos, botanical gardens, seed banks.
- 1.3. Species-specific recovery plans and Community-based conservation and sustainable use.
- 1.4. Major conserved areas in India and Kerala.

Module 2: Fundamentals of Biodiversity 8Hrs

- 2.1.Levels of biodiversity: genetic, species, and ecosystem. India as megadiversity centre. and biodiversity hotspots in India
- 2.2.Benefits of biodiversity. Methods for measuring biodiversity- Species Richness, Species dominance and Species abundance: Diversity Indices: Shannon-Wiener and Simpson's indices
- 2.3. The value of biodiversity: ecological, economic, cultural, and intrinsic. Cultural perspectives on wildlife and conservation.
- 2.4. Threats to biodiversity major reasons and control measures.

Module 3. Tools and techniques used in Conservation Biology 8Hrs

- 3.1. Ecological survey techniques: transects, quadrats, capture- mark-recapture.
- 3.2. Habitat assessment and monitoring: use of GIS and remote sensing, Drones (UAVs).
- 3.3. Genetic and Laboratory Tools: DNA Barcoding, Environmental DNA (eDNA)
- 3.4. Participatory Monitoring- PBR preparation and management.

Module 4: Laws and Policies for conservation 7Hrs

- 4.1. National and international conservation laws and agreements.
- 4.2. Role of organizations like IUCN, CITES, and WWF.
- 4.3. Policy tools: environmental impact assessments, conservation incentives.
- 4.4. Human-wildlife conflict and coexistence strategies.

Module 5. TEACH SPACE (15Hrs): This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

- 1. Field Trips: Visits to local ecosystems, protected areas, and conservation projects.
- 2. Assignments: Species assessments, habitat evaluations, and policy analysis.

- 3. Seminars and Discussions: Debates on contemporary conservation issues and ethical considerations.
- 4. Documentation of the practical works videos, microscopic photographs and other drawings by the student for evaluation as soft copy and/or hard copy.

Sl. No	Title/Author/Publishers of the Book specific to the module
1	Bawa S K, 2011. Conservation Biology: A Primer for South Asia, Universities Press
	(India), ISBN: 978-8173717246
2	Belsare D K and Singh R K, 2019. Biology and Management of India's Wildlife, Himalaya
	Publishing House, ISBN: 978-93-5299-803-6
3	https://openknowledge.fao.org/server/api/core/bitstreams/ecb51a59-ac4d-407a-80de-
	c7d6c3e15fcc/content
4	Raman A, 2024. Wildlife Ecology and Conservation, Scientific Publishers, ISBN: 978-
•	8172339746
5	Singh V, 2023. Biodiversity: Concepts, Crises, and Conservation. New India Publishing
J	Agency, ISBN: 978-8119002351.
6	https://www.unesco.org/en/sdgs
7	Lee M B, 2022. The Carbon Footprint of Everything, Greystone Books.
8	Muthu S K, 2020. Carbon Footprints: Case Studies from the Building, Household, and
0	Agricultural Sectors, Springer.
9	https://alison.com/course/principles-of-eco-friendly-living
10	https://www.futurelearn.com/courses/introduction-sustainability-development
11	https://www.edx.org/learn/sustainability
12	Sharma R K, Son, S and H J Ghunman, 2024. Green Consumption and Sustainable Lifestyle:
12	Evidence from India, https://www.mdpi.com/2076-3387/14/10/262
13	Fisher M R, 2018. Environmental Biology. Open Oregon Educational Resources.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	ICT
discussion	Practical sessions with demonstrations and
	hands on experiences

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination	50				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)					
Writing assignment	5				
 Reports/ presentations/ demonstrations by the students 	10				

2 Marks Question (Understanding)

- 1. Define in situ conservation, and why is it essential for biodiversity preservation?
- 2. Give and example for species-specific recovery plans in conservation efforts?
- 3. How do ethical considerations influence conservation priorities and strategies?
- 4. How does IUCN contribute to global conservation efforts?
- 5. List and briefly describe the main branches of conservation biology.
- 6. Name two major conserved areas in India and their significance.
- 7. Provide two examples for ex situ conservation.
- 8. What is CITES?
- 9. What is conservation biology, and why is it considered a multidisciplinary field?
- 10. What is eDNA, and how is it used in biodiversity monitoring?

6 Marks Questions (Applying and Analyzing):

- 1. Describe various strategies are employed to mitigate human-wildlife conflicts?
- 2. Explain the ecological benefits of maintaining biodiversity.
- 3. How does community-based conservation contribute to sustainable biodiversity management?
- 4. Give a brief account on the three levels of biodiversity, and why are they important?
- 5. What is DNA barcoding, and how does it contribute to species identification in conservation biology?

7 Marks Questions (Evaluating and Creating):

- 1. Describe the methods of transects and quadrats in ecological surveys. How do these techniques aid in assessing species distribution and abundance?
- 2. Discuss the concept of Participatory Biodiversity Registers (PBRs). How do they involve local communities in conservation efforts?
- 3. Explain how Geographic Information Systems (GIS) and remote sensing technologies are utilized in habitat assessment and monitoring.
- 4. What is the role of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) in global conservation efforts?

14 Marks Questions (Evaluating and Creating):

- 1. Analyze the ecological, economic, cultural, and intrinsic values of biodiversity. How do cultural perspectives influence wildlife conservation?
- 2. Assess the effectiveness of current conservation laws and policies in India. What improvements can be made to enhance biodiversity protection?
- 3. Compare and contrast in situ and ex situ conservation strategies. Provide examples of each and discuss their advantages and limitations.
- 4. Define DNA barcoding and environmental DNA (eDNA). How do these genetic tools assist in species identification and biodiversity monitoring?
- 5. Describe various methods for measuring biodiversity. Discuss their applications and limitations.
- 6. Evaluate the advantages and challenges of using Geographic Information Systems (GIS) and remote sensing in habitat assessment and monitoring.
- 7. Explain methods for measuring biodiversity, focusing on species richness, dominance, and abundance. How do diversity indices like Shannon-Wiener and Simpson's indices aid in this

assessment?

- 8. Explain the concept of species-specific recovery plans. How do community-based conservation and sustainable use contribute to biodiversity preservation?
- 9. Identify and describe major conserved areas in India and Kerala. Discuss their significance in the context of national and global conservation efforts.
- 10. What are biodiversity hotspots? Identify and explain the significance of biodiversity hotspots in India.

Employability for the Course / Programme

This foundation course will provide an opportunity to delve into the field of conservation biologist.

23	BASICS OF ENVIRONMENTAL SCIENCE	KU4VACBOT123
VAC	Semester : 4 Hrs/week : 3 Theory + 0 Practical	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes					
CO1	Describe Ecosystem Structure and Function					
CO2	Assess Biodiversity and Its Importance					
CO3	Evaluate Health Impacts of Pollution					
CO4	Apply Critical Thinking to Environmental Issues					
CO5	Communicate Environmental Concepts Effectively					

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark		
CO4								$\sqrt{}$	\checkmark	\checkmark	~	
CO5									V	V	$\sqrt{}$	V

Course Description

This is a general foundation course in botany for all UG students. The aim of the course is to give basic knowledge about the environmental science.

- First module gives an idea on the basics of ecology.
- Second module is dealing with an idea on the ecosystems and biodiversity.
- Third module describes the basics of environmental pollution and its impacts.
- Fourth module develops the concept of sustainable development.

This course will also provide you opportunities to observe diverse ecosystems and impacts of pollution in global environment.

Course Objectives:

- 1. To understand the interdisciplinary nature of Environmental Science.
- 2. To analyze ecosystem dynamics and biodiversity in the surroundings.
- 3. To assess the width and depth of environmental issues and also to internalize sustainable practices
- 4. To develop critical thinking and thereby enhancing the skill of problem solving in the era of climate change.

	Credit		Teaching	Hours	Assessment			
L/T	P/I	Total	L/T/P Total		CCA	ESE	Total	
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75	

COURSE CONTENT

Module 1: Introduction to Environmental Science (8 hours)

- 1.1.Definition and Scope: Understanding environmental science as an interdisciplinary field.
- 1.2.Multidisciplinary Nature: Integration of biology, chemistry, physics, geography, and social sciences.
- 1.3.Importance of Environmental Science: Role in addressing environmental challenges.
- 1.4.Concepts of Sustainability and Sustainable Development: Principles and practices for sustainable living.

Module 2: Ecosystems and Biodiversity (10 hours)

- 2.1. Ecosystem Structure and Function: Components and energy flow. Biogeocehmical cycles.
- 2.2. Types of Ecosystems: Forest, grassland, desert, and aquatic ecosystems.
- 2.3. Biodiversity: Definition, importance, and levels (genetic, species, ecosystem). Threats to Biodiversity: Habitat loss, poaching, invasive species.
- 2.4. Conservation of Biodiversity: In-situ and ex-situ conservation methods.

Module 3: Environmental Pollution and Health (9 hours)

- 3.1. Types of Pollution: Air, water, soil, noise, and thermal pollution.
- 3.2. Sources and Effects: Industrial, agricultural, and domestic sources.
- 3.3. Health Impacts: Diseases related to environmental pollution.
- 3.4. Control Measures: Technological and policy interventions.

Module 4: Environmental Issues and Sustainable Practices 9 hours

- 4.1. Climate Change: Causes, impacts, and mitigation strategies.
- 4.2. Deforestation and Desertification: Consequences and preventive measures.
- 4.3. Water Resources Management: Conservation and sustainable usage.
- 4.4. Waste Management: Solid waste, recycling, and composting.

Module 5: TEACH SPACE 9 hrs

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 Hrs

Sustainable Agriculture and Energy: Practices for sustainable development.

Environmental Policies and Legislation: National and international frameworks. Biodiversity hot spots. Case study: Pollution sites and its reclamation. Brahmapuram of Ernakulam.

Practical Component (5 hours)

Field Visit: Visit to a local ecosystem (e.g., forest, wetland) to observe biodiversity and

ecosystem functions.

Pollution Assessment: Collecting and analyzing water or soil samples for pollution indicators. Waste Audit: Conducting a waste audit in the campus or community to understand waste generation patterns.

Sustainable Practices Workshop: Demonstration of composting, rainwater harvesting, and energy conservation techniques.

Suggested Assignment Topics- Theory

- 32. Ecosystem
- 33. Environmental Pollution
- 34. Climate Change
- 35. Waste management
- 36. Biodiversity hotspots

Suggested Assignment Topics- Practical

- 1. Case studies on Biodiversity hotspots
- 2. Waste audit
- 3. Sustainable development Goals and Daily life

Sl. No	Title/Author/Publishers of the Book specific to the module		
1	Baird, C., & Cann, M. (2012). Environmental Chemistry.		
2	Gupta, P.K. (1996). Elements of Environmental Science and Engineering.		
3	Kormondy, E.J. (2013). Concepts of Ecology.		
4	Meadows, D.H., Meadows, D.L., & Randers, J. (2004). Limits to Growth: The 30-Year		
	Update.		
5	Miller, G.T. (2013). Living in the Environment: Principles, Connections, and Solutions.		
6	Odum, E.P. (2004). Fundamentals of Ecology.		
7	Primack, R.B. (2014). Essentials of Conservation Biology.		
8	Stern, P.C., & Fineberg, H.V. (1996). Understanding Risk: Informing Decisions in a		
	Democratic Society.		
9	Koparde A A, Patil A A and Doijad R C, (2020). A Textbook of Basic Concepts		
	in Environmental Science. Akinik Publications.		
10	Thakur, V. (2019). A text book of Environmental Science. Sciencetific		
	Publishers.		

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
Field visits	Demonstrations

ASSESSMENT RUBRICS	Marks	
End Semester Evaluation ESE		
University Examination	50	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in-	10	

	the-blank, matching, short answer and critical	
	thinking questions)	
•	Writing assignment	5
•	Reports/ presentations/ demonstrations by the students	10

2 Marks Question

- 1. What is the scope of environmental science?
- 2. Name any two interdisciplinary fields integrated into environmental science.
- 3. Explain the concept of sustainability.
- 4. What is sustainable development?
- 5. List the three levels of biodiversity.
- 6. Mention any two threats to biodiversity.
- 7. Name any two types of pollution.
- 8. What are biodegradable pollutants?
- 9. List any two causes of deforestation.
- 10. What is desertification?
- 11. Explain recycling.
- 12. What is composting?

6 Marks Questions:

- 1. Explain the interdisciplinary nature of environmental science and its significance in addressing environmental issues.
- 2. Discuss the concept of sustainability and its importance in promoting sustainable development practices.
- 3. Analyze the relationship between environmental pollution and public health, emphasizing the role of policy interventions.
- 4. Examine the causes and consequences of climate change, and propose strategies for its mitigation.
- 5. Discuss the importance of waste management and recycling in promoting sustainable living practices.

7 Marks Questions:

- 1. Describe the structure and function of an ecosystem, highlighting the roles of producers, consumers, and decomposers.
- 2. Define biodiversity and explain its significance in maintaining ecological balance and supporting ecosystem services.
- 3. Identify the major threats to biodiversity and discuss strategies for its conservation.
- 4. Explain the different types of environmental pollution and their impact on human health and the environment.
- 5. Discuss the sources and effects of water pollution, and suggest measures to prevent and control it.

14 Marks questions

1. Discuss the interdisciplinary nature of environmental science and its significance in addressing contemporary environmental challenges.

- 2. Explain the structure and function of ecosystems, highlighting the role of organisms in different trophic levels. Add a short note on the importance of biodiversity in maintaining ecosystem stability.
- 3. Analyze the various types of environmental pollution, their sources, and their impacts on human health and the environment. Propose effective control measures for each type of pollution.
- 4. Examine the causes and consequences of climate change. Discuss global and local mitigation strategies.
- 5. Evaluate the role of government policies and individual actions in promoting environmental conservation. Does legislation is effective in achieving environmental sustainability?

Employability for the Course / Programme

It is one of the VAC courses in botany which is very helpful in understanding the basics of environmental science; directing to the passionate world of environmentalist.

24	CLIMATE CHANGE AND DISASTER MANAGEMENT	KU4VACBOT124
VAC	Semester : 4 Hrs/week : 3 Theory + 0 Practical	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes								
CO1	Understand the fundamental concepts of climate and weather								
CO2	Analyze the effect of Global Warming in various natural disasters and climate change								
CO3	Analyze the effects of climate change on ecosystems and human systems								
CO4	Explore Mitigation Strategies and Policy Frameworks								

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	\checkmark	\checkmark									
CO2			\checkmark	V	V	$\sqrt{}$						
CO3							$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4					·	_		V	V	$\sqrt{}$	$\sqrt{}$	

Course Description

This is a GFC VAC course in botany designed for all UG students. The aim of the course is to give basic knowledge about the climate change and disaster managements.

- First module is unraveling the basic concepts on climate change.
- Second module is giving an idea on disasters and their management strategies.
- Third module delves into the impacts of climate change.
- Fourth module tells about various national and international mitigation strategies and agreements.

This course will also provide you opportunities to observe diverse forms of plant life in forests

- 1. To know about Earth's climate systems and its variability.
- 2. To understand the concept greenhouse effect and global warming
- 3. To assess the role of disaster management in reducing the impact on human life.
- 4. To analyze the impacts of climate change on biosphere.

Credit Teaching Hours	Assessment
-----------------------	------------

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to Climate Change (8 hours)

- 1.1.Climate and Weather. Climate Systems and Variability: Understanding Earth's climate systems and natural variability. Concept of microclimates.
- 1.2. Greenhouse Effect and Global Warming: Mechanisms and implications.
- 1.3. Anthropogenic activities leading to Global warming. Other causes of Global warming.
- 1.4.Direct and indirect impacts of global warming: Rising temperatures, sea-level rise, and extreme weather events. future projections.

Module 2: Disasters and Their Management (10 hours)

- 2.1. Types of Disasters: Natural (earthquakes, floods, cyclones) and anthropogenic (industrial accidents, nuclear incidents).
- 2.2. Disaster Risk Reduction (DRR): Strategies for minimizing disaster risks.
- 2.3. Disaster Management Cycle: Phases of disaster management: mitigation, preparedness, response, and recovery.
- 2.4. Institutional Frameworks: Roles of national and international agencies in disaster management. Case Studies: Analysis of major disasters: Prediction of cyclones in the Indian East coast.

Module 3: Climate Change Impacts and Adaptation (10 hours)

- 3.1. Impacts on Ecosystems: Effects on biodiversity, forests, and marine life.
- 3.2. Impacts on Human Systems: Agriculture, water resources, health, and infrastructure.
- 3.3. Vulnerable Populations: Impacts on marginalized and low-income communities.
- 3.4. Adaptation Strategies: Climate-resilient agriculture, water management, and urban planning. Climate Justice: Equity considerations in adaptation efforts.

Module 4: Mitigation Strategies and Policy Frameworks (8 hours)

- 4.1. Mitigation Measures: Renewable energy, energy efficiency, and carbon capture.
- 4.2. International Agreements: Kyoto Protocol, Paris Agreement, and their implications.
- 4.3. National Policies: India's National Action Plan on Climate Change (NAPCC) and state action plans.
- 4.3. Role of Technology and Innovation: Technological advancements in mitigation efforts. Public Awareness and Education: Strategies for promoting climate change awareness.

Module 5. PRACTICALS (9 hrs):

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 hrs

Case studies on Floods of Kerala; Covid-19 Pandemic; Landslides in Kerala

Practicals 5 hours

- 1. Field Visit: Visit to a local disaster-prone area or climate-resilient project.
- 2. Simulation Exercise: Disaster response simulation using role-playing.
- 3. Data Analysis: Analysis of climate data and disaster statistics.

4. Project Presentation: Students present a project on climate adaptation or disaster risk reduction strategies.

Suggested Assignment Topics- Theory

- 1. Disaster management
- 2. Climate change
- 3. Impacts of Global warming
- 4. Biodiversity of Kerala
- 5. India as megadiversity centre

Suggested Assignment Topics- Practical

- 1. Reports after field visits
- 2. Projects on various pollution studies

	Suggested readings								
Sl. No	Title/Author/Publishers of the Book specific to the module								
1	Adger, W. N., et al. (2007). Assessment of Adaptation Practices, Options, Constraints, and Capacity. Cambridge University Press.								
2	Coppola, D. P. (2015). Introduction to International Disaster Management. Elsevier.								
3	Government of India (2008). <i>National Action Plan on Climate Change</i> . Ministry of Environment, Forest and Climate Change.								
4	Houghton, J. (2009). Global Warming: The Complete Briefing. Cambridge University Press.								
5	IPCC (2021). Climate Change 2021: The Physical Science Basis. Cambridge University Press.								
6	Paul, B. K. (2003). Environmental Hazards and Disasters: Contexts, Perspectives, and Management. Wiley-Blackwell.								
7	Smit, B., et al. (2001). Adaptation to Climate Change in the Context of Sustainable Development and Equity. Cambridge University Press.								
8	UNFCCC (2015). Paris Agreement. United Nations Framework Convention on Climate Change.								
9	Khullar D R, 2021. Environment and Disaster Management								
10	Agrahari R P, 2023. Environmental Ecology, Bio-Diversity, Climate Change & Disaster Management, MaC Graw Hill.								

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
	Demonstrations

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination	50				
Continuous Comprehensive Assessment CCA					
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10				

•	Writing assignment									
•	Reports/ presentations/ demonstrations by the students	10								

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. What is the greenhouse effect, and how does it contribute to global warming?
- 2. Identify two major anthropogenic activities that lead to global warming.
- 3. Explain the concept of microclimates and provide an example.
- 4. Differentiate between natural and anthropogenic disasters with examples.
- 5. Outline the four phases of the disaster management cycle.
- 6. Discuss the role of national and international agencies in disaster risk reduction.
- 7. Describe the impact of climate change on biodiversity.
- 8. Explain how climate change affects agriculture and water resources.
- 9. What are renewable energy sources, and how do they mitigate climate change?
- 10. Summarize the objectives of the Paris Agreement in addressing global warming.

6 Marks Questions:

- 1. Analyze the objectives and outcomes of the Paris Agreement in addressing global warming.
- 2. Describe the role of national and international agencies in disaster risk reduction.
- 3. Differentiate between natural and anthropogenic disasters with examples.
- 4. Discuss the direct and indirect impacts of global warming on the environment.
- 5. Discuss the vulnerability of marginalized communities to climate change impacts.

7 Marks Questions:

- 1. Evaluate the effectiveness of renewable energy sources in mitigating climate change.
- 2. Explain the effects of climate change on biodiversity and ecosystems.
- 3. Identify and explain two major anthropogenic activities that lead to global warming.
- 4. Outline the four phases of the disaster management cycle and their significance.
- 5. What is the greenhouse effect, and how does it contribute to global warming?

14 Marks Questions:

- 1. Explain the greenhouse effect and its role in global warming. Discuss the anthropogenic activities contributing to global warming and their implications for Earth's climate systems.
- 2. Analyze the various types of natural and anthropogenic disasters. Discuss the disaster management cycle and the roles of national and international agencies in disaster risk reduction and response.
- 3. Assess the impacts of climate change on ecosystems and human systems, with a focus on agriculture, water resources, health, and infrastructure. Discuss adaptation strategies and the concept of climate justice in addressing these challenges.
- 4. Evaluate the effectiveness of mitigation measures such as renewable energy, energy efficiency, and carbon capture in combating climate change. Discuss about various international agencies and agreements on Climate change.
- 5. Discuss the role of technology, innovation, and public awareness in addressing climate change. Evaluate the effectiveness of educational initiatives and policy frameworks in promoting sustainable practices and climate resilience.

Employability for the Course / Programme

It is one of the advanced courses which is very helpful in understanding the diversity of plant life

25	ENTRPRENEURESHIP IN COMPOST MAKING	KU4VACBOT125
VAC	Semester : 4 Hrs/week : 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes								
CO1	Utilize appropriate composting methods tailored to specific organic waste types								
CO2	Enhance Environmental Sustainability by selecting proper waste management system								
CO3	Expand composting initiatives from small-scale setups to larger operations								
CO4	Develop and implement business plans for sustainable and profitable composting ventures.								

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3					$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	\checkmark	~		
CO4								$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$	$\sqrt{}$

Course Description

This is an advanced botany course designed for UG students in general and BSc Zoology and BSc Forestry in particular. The aim of the course is to give basic knowledge about the diversity of plant life forms.

- First module is giving basics of composting and its environmental benefits.
- Second module delves into the basic techniques of composting prevailing in India and abroad.
- Third module is giving directions to setup composting ventures.
- Fourth module is inducing the student to start a business plan on composting enterprises.

This course will also provide opportunities to observe various types of composting present in our premises.

- 6. To gather knowledge on various composting techniques
- 7. To articulate the knowledge on decomposing microorganisms in solid waste management through composting.
- 8. To design and establish small- to large-scale composting systems.
- 9. To create business models on composting ventures.

Credit			Teaching H	ours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA ESE		Total	
3	0	3	3 +0 + 0 (45 +0 +0)	3 (45)	25	50	75	

COURSE CONTENT

Module1: Introduction to Composting 9 Hrs

- 1.1.Definition and Importance of Composting: Understanding composting as a sustainable waste management practice. Microbes and other organisms in composting.
- 1.2.Environmental Benefits: Reduction of landfill waste, greenhouse gas emissions, and the role in soil health.
- 1.3. Types of Composting: Aerobic vs. anaerobic, vermicomposting, and their applications.
- 1.4. Composting Materials: Organic waste types, carbon to nitrogen ratio, and moisture content.

Module 2: Compost Production Techniques 10 Hrs

- 2.1.Composting Methods: Windrow, pit (Heap composting and Tank composting), and bin composting techniques.
- 2.2. Vermicomposting and importance: Introduction to earthworm species, bed preparation, and harvesting. Vermi wash.
- 2.3. Small- and Large-scale composting. Kitchen waste composting, farm waste composting.
- 2.4.Quality Parameters: Temperature, pH, moisture, and maturity indicators. Troubleshooting: Common issues like odor, pests, and improper decomposition.

Module 3: Practical Implementation and Scaling of Composting Ventures 10 hours

- 3.1. Site Selection and Setup: Choosing appropriate locations, infrastructure requirements, and equipment.
- 3.2. Operational Management: Daily operations, labor management, and inventory control.
- 3.3. Scaling Strategies: Expanding production capacity, diversifying product lines, and exploring new markets. Value addition of compost, activated compost, weed compost, compost sieving and packing
- 3.4. Sustainability Practices: Implementing eco-friendly practices and achieving sustainability goals. Composting Kerala model: Thumboormuzhi. Biocomposting Methods: Coimbatore method, Indore method, Bangalore method.

Module 4. Business Planning and Market Strategies for Compost Enterprises 7hrs

- 4.1. Business Model Development: Identifying target markets, value proposition, and revenue streams.
- 4.2. Legal and Regulatory Aspects: Licensing, certifications, and environmental regulations.
- 4.3. Marketing Strategies: Branding, pricing, distribution channels, and customer engagement.
- 4.4. Financial Planning: Cost analysis, pricing models, and profitability projections.

Module 5. PRACTICALS 9 hrs

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 hrs

Biodegradation mechanism in composting process- various new initiatives in composting, case studies.

Practicals 5 hrs

- 1. Biocomposting lab visits
- 2. Identification of vermicompost worms
- 3. preparation of vermiwash
- 4. Identification of different composting bins and equipment
- 5. A start up project proposal writing in composting
- 6. Prepare and submit an innovative model for composting

Suggested Assignment Topics- Theory

- 1. Biocomposting
- 2. Thumboormuzhi
- 3. Banglore model of biocomposting
- 4. Indore model of biocomposting
- 5. Meachanism in composting
- 6. Organisms in composting

Suggested Assignment Topics- Practical

- 3. Collection of photos and life histories of composting organisms
- 4. Exhibition and album preparations on successful composting methods.

Suggested readings

Sl. No	Title/Author/Publishers of the Books/ Online resources
1	Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste
	Management through Composting: Challenges and Potentials. <i>Sustainability</i> , <i>12</i> (11), 4456. https://doi.org/10.3390/su12114456
2	Cummings D, 2015.Organic Composting Handbook: Techniques for a Healthy, Abundant Garden, Skyhorse Publishers
3	Dabral, M. (2025). Basics of Vermicomposting Business. Retrieved from Udemy
4	Entrepreneur India. (2025). The Complete Book on Organic Farming and Production of Organic Compost (3rd Edition). Retrieved from entrepreneurindia.co.in
5	Forsyth County Cooperative Extension. (2025). <i>Composting Basics</i> . Retrieved from forsyth.ces.ncsu.eduUdemyforsyth.ces.ncsu.edu
6	Gupta M K, 2007. Handbook of Organic Farming and Biofertilizers, ABD Publishers.
7	https://www.nyc.gov/assets/dsny/docs/nyc-master-composter-manual-mcm.pdf
8	Institute for Local Self-Reliance. (2025). Community Composting 101 Online Certificate Course. Retrieved from ilsr.org
9	Madhav V N, Geetha S and N Gangadhar, 2022. Biofertilizers and Organic Farming, BFC Publications
10	North Carolina Cooperative Extension. (2025). Composting Basics. Retrieved from forsyth.ces.ncsu.edu
11	Urban Worm Company. (2025). Commercial Worm Farm Course. Retrieved from urbanwormcompany.com
12	Wilson J, 2020. Composting: Sustainable and Low-Cost Techniques for Beginners. Drip Digital.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
Field visits	Demonstrations

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination	50			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)				
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

Sample Questions to test Outcomes.

2 Marks Questions

- 1. What is composting, and why is it important?
- 2. List two environmental benefits of composting.
- 3. Differentiate between aerobic and anaerobic composting.
- 4. What is the ideal carbon-to-nitrogen (C:N) ratio for composting?
- 5. Explain any two features of windrow composting method.
- 6. What is vermiwash, and how is it used?
- 7. Name one method for small-scale composting.
- 8. What temperature range is ideal for composting?
- 9. How does the Thumboormuzhi model of composting is different from other composting?
- 10. Name one biocomposting method.

6 Marks Questions

- 1. Detail the process of vermicomposting, including bed preparation, suitable earthworm species, and the benefits of vermiwash.
- 2. Discuss strategies for scaling composting operations, including site selection, operational management, and exploring new markets.
- 3. Discuss the environmental benefits of composting, focusing on its impact on landfill reduction and soil health.
- 4. Discuss the Indore method of composting, focusing on its layering process and the role of periodic turning.
- 5. Explain the Coimbatore method of composting, emphasizing its unique features and benefits.

7 Marks Questions

- 1. Compare aerobic and anaerobic composting methods, highlighting their differences and suitable applications.
- 2. Describe the ideal carbon-to-nitrogen (C:N) ratio for composting and its importance in the decomposition process.

- 3. Describe the Thumboormuzhi model of composting in Kerala, highlighting its community involvement and sustainability practices.
- 4. Explain the process of composting and its significance in sustainable waste management.
- 5. Outline the steps involved in windrow composting and its advantages for large-scale composting operations.

14 Marks Questions

- 1. Discuss the principles and environmental significance of composting.
- 2. Compare and contrast various composting methods, emphasizing their applications and advantages.
- 3. Elaborate on the Thumboormuzhi model of composting in Kerala and its impact on community waste management.
- 4. Analyze the business planning aspects of establishing a composting enterprise.
- 5. Explore scaling strategies for composting ventures, focusing on operational management and sustainability practices.

Employability for the Course / Programme

It is one of the foundation course in Botany to get an environmental awareness which is very helpful in the progression as an active social worker as well as an industrialist.

26	BIOFERTILISER AND MARKETING	KU4VACBOT126
VAC	Semester: 4 Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes					
CO1	Apply Biofertilizer Knowledge in Agricultural Practices					
CO2	Demonstrate Practical Skills in Biofertilizer Production					
CO3	Ensure Quality Control in Biofertilizer Production					
CO4	Design and Implement Biofertilizer-Based Business Models					

Mapping of Course Outcomes to PSOs/POs

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	\checkmark				
CO3							\checkmark	\checkmark	\checkmark	\checkmark		
CO4		·			·		·		\checkmark	$\sqrt{}$	$\sqrt{}$	V

Course Description

This is a GFC VAC course in botany designed for all UG students. The aim of the course is to give basic knowledge in setting up of biofertilizer units and their business opportunities.

- First module is an introduction to biofertilisers.
- Second module is dealing with the production techniques of biofertlisers.
- Third module is directing the stakeholders to the world of biofertiliser business.
- Fourth module is inducing the student for a start up in biofertliser venture.

This course will provide you opportunities to observe diverse biofertliser techniques.

- 1. To gather knowledge on biofertilizers and their importance
- 2. To identify various types of biofertilizers
- 3. To understand mechanisms of enhancement of soil fertility and plant growth
- 4. To assess the benefits and limitations in developing business and marketing ventures in the field of biofertilisers.

Credit			Teaching H	lours	A	ssessment	nt	
L/T	P/I	Total	L/T/P	Total	CCA ESE Tota			
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75	

COURSE CONTENT

Module 1: Introduction to Biofertilizers (8 hours)

- 1.1.Definition and Importance: Understanding biofertilizers as sustainable alternatives to chemical fertilizers.
- 1.2. Types of Biofertilizers: Nitrogen fixers (e.g., *Rhizobium, Azotobacter*), phosphorus solubilizers, potassium mobilizers, mycorrhizae, and cyanobacteria.
- 1.3. Mechanisms of Action: How biofertilizers enhance soil fertility and plant growth.
- 1.4.Benefits and Limitations: Advantages of biofertilizers in agriculture and potential challenges.

Module 2: Production Techniques of Biofertilizers (10 hours)

- 2.1.Microbial Strain Selection: Criteria for selecting effective microbial strains for biofertilizer production. Isolation and Purification: Techniques for isolating and purifying beneficial microorganisms.
- 2.2.Mass Production Methods: Solid-state fermentation and submerged fermentation techniques.
- 2.3.Formulation Types: Carrier-based and liquid formulations; advantages and disadvantages.
- 2.4.Quality Control: Standards for biofertilizer quality, including microbial count, viability, and shelf life.

Module 3: Business Planning and Marketing of Biofertilizers (10 hours)

- 3.1. Market Analysis: Identifying target markets, customer needs, and competition.
- 3.2. Business Model Development: Creating a sustainable business model for biofertilizer production.
- 3.3. Regulatory Compliance: Understanding national and international standards for biofertilizer production and marketing.
- 3.4. Marketing Strategies: Branding, pricing, distribution channels, and promotional tactics. Sales and Distribution: Establishing sales networks and partnerships with agricultural stakeholders.

Module 4: Practical Implementation and Scaling of Biofertilizer Ventures (8 hours)

- 4.1. Site Selection and Infrastructure: Choosing appropriate locations and setting up production facilities.
- 4.2. Operational Management: Managing production processes, inventory, and quality assurance.
- 4.3. Scaling Strategies: Expanding production capacity and diversifying product offerings.
- 4.4. Sustainability Practices: Implementing eco-friendly practices and achieving sustainability goals.

Module 5. TEACH SPACE (9 hrs):

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2hrs

Case study: Successful stories on biofertilizer technique and marketing

Practicals 7 Hrs

- Production Demonstration: Demonstrating the production of biofertilizers using different methods.
- Quality Control Testing: Conducting tests to assess the quality of produced biofertilizers.
- Market Survey: Conducting surveys to understand market demand and customer preferences.
- Business Plan Presentation: Developing and presenting a business plan for a biofertilizer enterprise.

Suggested Assignment Topics- Theory

- 1. Biofertilizer
- 2. Mechanism of decomposition used in biofertilizer technique
- 3. Microorganisms in biofertilizer tehenology

Suggested Assignment Topics- Practical

- 1. Survey on biofertliser industry
- 2. Feasibility study on biofertilizer marketing

Suggested readings

Sl. No	Title/Author/Publishers of the Books/ online resources
1	Amrita Vishwa Vidyapeetham. (2025). Biofertilizer Technology. Retrieved from amrita.edu
2	B. N. Johri and V. K. Sharma (2014). Biofertilizers: Commercial Production Technology
	and Quality Control, Springer.
3	BASIC BIOFERTILIZER TECHNOLOGY (Skill Enhancement Course). (2025). Retrieved
	from biotech.iisuniv.ac.in
4	Centurion University. (2025). Bio-Fertilizer Preparation – Courseware. Retrieved from
	courseware.cutm.ac.in
5	Gupta M K, 2007. Handbook of Organic Farming and Biofertilizers, ABD Publishers.
6	https://www.nyc.gov/assets/dsny/docs/nyc-master-composter-manual-mcm.pdf
7	Institute for Local Self-Reliance. (2025). Community Composting 101 Online Certificate
	Course. Retrieved from ilsr.org
8	Institute of Agriculture, Kumulur. (2025). Commercial Courses. Retrieved from
	tnau.ac.inmaraugusthinosecollege.org
9	Madhav V N, Geetha S and N Gangadhar, 2022. Biofertilizers and Organic Farming, BFC
	Publications
10	Mar Augusthinose College. (2025). Biofertilizers and Its Applications. Retrieved from
	maraugusthinosecollege.org
11	Organic Farming – Courseware. (2025). Retrieved from
	course.cutm.ac.inbiotech.iisuniv.ac.in
12	Pankaj Bhatt and Ajar Nath Yadav (2019). Biofertilizers for Sustainable Agriculture,
	Springer Publication.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT

discussion	Practicals
Field visits	Demonstrations

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination	50			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

Sample Questions to test Outcomes.

2 Marks Question

- 1. Define biofertilizers.
- 2. Explain the term 'carrier-based formulation' in biofertilizer production.
- 3. Identify one advantage of using biofertilizers over chemical fertilizers.
- 4. List two nitrogen-fixing bacteria used as biofertilizers.
- 5. Mention a regulatory aspect important in biofertilizer marketing.
- 6. Name a free-living nitrogen-fixing cyanobacterium used as a biofertilizer.
- 7. Write down the primary purpose of seed treatment with biofertilizers.
- 8. What is the role of biofertilizers in integrated nutrient management?
- 9. What is meant by mycorrhizal fungi? Mention its role in biofertilization.
- 10. Give a brief account on the significance of quality control in biofertilizer production.

6 Marks Questions:

- 1. Outline the steps involved in the production of biofertilizers.
- 2. Discuss the importance of quality control in biofertilizer production.
- 3. Explain the regulatory compliance requirements for biofertilizer production and marketing.
- 4. What are biofertilizers, and how do they contribute to sustainable agriculture?
- 5. What are the key components of a business model for biofertilizer production?

7 Marks Questions:

- 1. Compare carrier-based and liquid formulations of biofertilizers.
- 2. Describe the different types of biofertilizers and their specific functions.
- 3. Explain the mechanisms through which biofertilizers enhance plant growth.
- 4. Describe the strategies for scaling up biofertilizer production operations.
- 5. What are the advantages and limitations of using biofertilizers in agriculture?

14 Marks Questions

- 1. Discuss the role of biofertilizers in sustainable agriculture.
- 2. Compare and contrast different types of biofertilizers and their applications.
- 3. Explain the methods of biofertilizer production and quality control measures.

- 4. Analyze the business planning and marketing strategies for biofertilizer enterprises.5. Evaluate the challenges and strategies in scaling biofertilizer production.

Employability for the Course / Programme

It is a basic course in Botany for becoming an entrepreneur in the field of biofertilizer production and marketing.

8	Biodiversity of Ker	KU4SECBOT108	
SEC	Semester: 4	Hrs/week: 3 Theory	Credits: 3

- 3. Knowledge in Biology at 10th Standard
- 4. Ability to write examination in English

Course Ou	Course Outcomes					
CO1	Assess the geographic, climatic, and ecological factors contributing to Kerala's rich biodiversity					
CO2	Evaluate Conservation Efforts					
CO3	Identify endemic and threatened plant and animal species in Kerala					
CO4	Design Sustainable Ecotourism Plans after the study of community based ecotourism projects in Kerala					

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	\checkmark	$\sqrt{}$									
CO2			$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$						
CO3							\checkmark	$\sqrt{}$	~	\checkmark		
CO4								$\sqrt{}$	√	\checkmark	\checkmark	

Course Description

This is a GFC SEC course designed for the fourth semester students of UG programmes.

- First module is giving a basic knowledge on biodiversity of Kerala.
- Second module is a detailed account on flora and fauna of Kerala with case studies on endemic and invasive species
- Third module is giving theoretical knowledge of Ecotourism.
- Fourth module is directing the designing of ecotourism projects.

This course will provide you opportunities to observe diverse forms of flora and fauna in major ecosystems of Kerala and also helps to plan ecotourism projects.

- 1. To explore the unique biodiversity of Kerala, emphasizing its flora, fauna, and ecosystems.
- 2. To understand the principles and practices of ecotourism and its role in sustainable development.
- 3. To analyze the interrelationship between biodiversity conservation and tourism.
- 4. To examine case studies of ecotourism initiatives in Kerala.

Credit			Teaching Hou	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+0+0 (45+0+0)	3	25	50	75

COURSE CONTENT

Module 1: Introduction to Kerala's Biodiversity 9 hrs

- 1.1. Kerala's Geography and Climate- Major ecosystems: Western Ghats, wetlands, coastal areas, and backwaters.
- 1.2. Kerala's Tropical monsoon climate; Geographic and climatic factors influencing Kerala's biodiversity.
- 1.3. Major Biodiversity Areas- Silent Valley National Park, Agasthyamala Biosphere Reserve, Shendurney Wildlife Sanctuary, Ashtamudi Lake and Mangrove ecosystems.
- 1.4. Major threats to Kerala's biodiversity- Habitat loss and fragmentation (Case Study: Silent valley Movement) Invasive alien Species (Case study: plant-*Mikania micrantha* and animal- African snail)

Module 2: Flora and Fauna of Kerala 9 hrs

- 2.1. Flora- Endemic plant species, RET plants of Kerala. Medicinal plants of Kerala and their uses. Major Mangrove plants and their allies. (Case Study: *Strobilanthes kunthianus* (Neela Kurinji)
- 2.2. Fauna- Endemic fauna of Kerala Nilgiri tahr, Indian elephant, lion-tailed macaque, Great hornbill (Case study: *Nasikabatrachus sahyadrensis*)
- 2.3. Conservation Status: red data book and IUCN. IUCN Red Listed species from Kerala.
- 2.4. Biodiversity Hotspots- Western Ghats as a global biodiversity hotspot; Endemic species and ecosystems. Western Ghat as World heritage site.

Module 3: Ecotourism: Concepts and Practices 9 hrs

- 3.1. Definition and Principles- Sustainable tourism, Community involvement and empowerment
- 3.2. Ecotourism Models- Community-based ecotourism; Nature reserves and wildlife sanctuaries.
- 3.3. Case Studies of Ecotourism: Thenmala Ecotourism and Periyar Wildlife Sanctuary, Community based Adavi and Kadalundi
- 3.4. Impacts of Ecotourism- Positive impacts-Economic benefits: Employment, infrastructure development; Environmental awareness and conservation funding. Negative impacts-Environmental degradation: Pollution, habitat disturbance; Cultural impacts: Displacement, loss of traditions

Module 4: Designing Sustainable Ecotourism Models 9 hrs

- 4.1. Planning and Development- Site selection and feasibility studies, Infrastructure and facilities
- 4.2. Community Participation- Stakeholder engagement, Capacity building and training
- 4.3. Monitoring and Evaluation- Indicators of sustainability, Feedback mechanisms and adaptive management
- 4.4. Future Perspectives: Emerging trends in ecotourism; Role of technology and digital platforms in promoting sustainable tourism

Module 5. TEACH SPACE 9 Hrs

This module is a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 2Hrs

Aaralam Wild life sanctuary as a place of Ecotourism; Madayippara – a biodiversity centre. Practical 7 Hrs

- 20. Preparation of field visit reports by visiting any two ecotourism initiatives
- 21. Conduct of Photoexhibition focusing on ecotourism
- 22. Reels and video documentary preparation on ecotourism

Suggested Assignment Topics- Theory

- 37. Botanical illustrations
- **38.** Various formats

Suggested Assignment Topics- Practical

- 28. Poster making
- 29. Seed jewelry making

Suggested Readings

Sl. No	Title/Author/Publishers of the Books and online resources						
1	Biodiversity Documentation For Kerala Part 1-11, KFRI						
2	K P Laladhas , Preetha N & Oommen V Oommen, Biodiversity Richness of Kerala, KSBB.						
3	K.V. Sankaran, T.A.Suresh, T.V.Sajeev, Invasive Plants of Kerala, KSBB.						
4	Kerala Tourism Development Corporation, Ecotourism In Kerala: A Gateway To Nature And Sustainability						
5	N. Sasidharan, Common Trees of Kerala, KSBB.						
6	P Sujanapal & N Sasidharan, Handbook On Mangroves And Mangrove Associates Of Kerala, KSBB.						
7	Rajani P, A Study on Ecotourism in Kerala, Lambert Academic Publishing, ISBN-13: 978-620-6-75176-2.						
8	Sustainable Development of Tourism in India: A Case Study of Kerala ISBN-13: 978-3639511284.						
T.M. Manoharan, S.D. Biju, T.S. Nayar, and P.S. Easa, 1999. Silent Valley: Whispers Reason							
10	Vishnu S and Gayathri M S, Eco-Tourism Projects in Kerala, Thrift Books. ISBN-13: 9780993885341.						

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Collaborative learning-Group	Lecturing
discussion	> ICT
Field Visits	Demonstrations
Documentaries	

ASSESSMENT RUBRICS		
End Semester Evaluation ESE		
University Examination	50	
Continuous Comprehensive Assessment CCA		
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10	
Writing assignment	5	

• Reports/ presentations/ demonstrations by the students

Sample Questions to test Outcomes.

2 Marks Questions

- 1. What are the major ecosystems found in Kerala?
- 2. Explain the significance of Kerala's tropical monsoon climate to its biodiversity.
- 3. Name two major biodiversity areas in Kerala and their importance.
- 4. What is the Silent Valley Movement, and why was it significant?
- 5. Identify two invasive species in Kerala and their impact on local ecosystems.
- 6. Define 'endemic species' and provide an example from Kerala.
- 7. What does 'RET' stand for in relation to plant species, and why is it important?
- 8. Mention one medicinal plant native to Kerala and its traditional use.
- 9. List two endemic animal species found in Kerala.
- 10. What is the IUCN Red List, and how does it relate to Kerala's fauna?

6 Marks Questions

- 1. Assess the threats posed by invasive species like Mikania micrantha and the African snail to Kerala's native ecosystems.
- 2. Define ecotourism and explain its core principles, emphasizing sustainable tourism and community involvement.
- 3. Describe the ecological importance of Kerala's backwaters and their role in supporting local biodiversity.
- 4. Describe the key steps involved in planning and developing a sustainable ecotourism site, including site selection and feasibility studies.
- 5. Describe the unique flowering cycle of Strobilanthes kunthiana (Neelakurinji) and its cultural significance in Kerala.
- 6. Evaluate the impact of habitat loss and fragmentation on Kerala's biodiversity, citing the Silent Valley Movement as a case study.
- 7. Examine the conservation status of the Nilgiri Tahr and the Lion-tailed Macaque in Kerala.
- 8. Examine the environmental and cultural impacts of ecotourism, highlighting both positive and negative aspects.
- 9. Explain how Kerala's tropical monsoon climate influences its diverse flora and fauna.
- 10. Explain the role of monitoring and evaluation in ensuring the sustainability of ecotourism projects, focusing on indicators and feedback mechanisms.

7 Marks Questions

- 1. Discuss the concept of community-based ecotourism and its significance in promoting environmental conservation.
- 2. Discuss the importance of community participation in ecotourism, outlining strategies for stakeholder engagement and capacity building.
- 3. Discuss the major ecosystems of Kerala and their significance in maintaining the state's biodiversity.

- 4. Discuss the significance of Kerala's mangrove ecosystems and their role in coastal biodiversity conservation.
- 5. Evaluate the economic benefits of ecotourism, focusing on employment generation and infrastructure development.
- 6. Give an account on the endemic plant species of Kerala and their ecological roles.
- 7. Identify emerging trends in ecotourism, particularly the use of technology and digital platforms in promoting sustainable tourism.
- 8. Outline the role of nature reserves and wildlife sanctuaries in ecotourism, with examples from Kerala
- 9. Propose a model for a sustainable ecotourism initiative in Kerala, integrating the principles of conservation, community involvement, and economic viability.
- 10. Write an account on the importance of Kerala's wetlands in supporting migratory bird populations and their conservation status.

14 Marks Questions

- 1. Evaluate the ecological significance of Kerala's major ecosystems and discuss the factors influencing their biodiversity.
- 2. Discuss the role of community-based ecotourism in Kerala and assess their impact on local communities and conservation efforts.
- 3. Analyze the positive and negative impacts of ecotourism in Kerala. Use case studies to illustrate your points.
- 4. Propose a sustainable ecotourism model for a selected region in Kerala.
- 5. Examine the future perspectives of ecotourism in Kerala and their potential to promote sustainable tourism.

Employability for the Course / Programme

This course is a GFC SEC course that encourages the stakeholder to observe various places in Kerala on an ecological perspective and helps to develop an ecotourism plan.

9	FLORAL AR	KU4SECBOT109	
SEC	Semester: 4	Hrs/week: 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes					
CO1	Understand the scope of floral art business and to study different styles of floral arrangement					
CO2	Application of different floral arts into daily life events					
CO3	Basic idea on floriculture business					
CO4	Enthusiasm to earn practical skills in floral and vegetable art.					

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	\checkmark	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
CO4								V	V	V	$\sqrt{}$	

Course Description

This is a general foundation course SEC in botany designed for UG all students. The aim of the course is to give basic knowledge about various floral art forms and its business aspects.

- First module is dealing with various floral art forms in this era.
- Second module is unravelling the diverse forms of floral arts specific to various events and its significance in daily and corporate modes of human life.
- Third module is helping to study the floriculture as agriculture, business and industry.
- Fourth module delves into the cultural heritage of India in floral arts.

This course will also provide opportunities to go through various first hand experiences on floral arts.

- 1. To acquire basic knowledge on different types of floral arts, processing and packaging
- 2. To acquire the basics of doing floriculture business
- 3. To equip the students for commercial propagation for getting self-employment and for giving employment to others
- 4. To understand the scope of floral art business and to study different styles of floral arrangement

5. To develop practical skills in floral and vegetable art.

Credit			Teaching H	lours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75	

COURSE CONTENT

Module 1: Introduction to Floral Arts 10hrs

- 1.1.Flowers and inflorescences: basic parts of flowers and inflorescences, variation in longevity among different flowers, Major flowers and inflorescences used in floral art.
- 1.2. Floral Materials and Tools: Introduction to various flowers, foliage, and essential tools used in floral design. Popular foliage species cultivated for floral arrangement.
- 1.3.**Principles of Floral Design**: Balance, proportion, harmony, unity, rhythm, focal point, and scale. Understanding color schemes, textures, and composition in floral arrangements. Drying and preservation of flowers, Longevity enhancement of cut flowers
- 1.4.Flower arrangement types (Classical, Contemporary, European, Ikebana). Essential tools and materials used in flower arrangement.

Module 2: Types of Floral designs and arts for specific events 9 hrs

- 2.1. Major events in common man's life where floral art is having importance: from birth to death. Indoor and Outdoor flower arrangements.
- 2.2. Funeral and Sympathy Floral Designs: Designing appropriate arrangements for funerals and sympathy occasions.
- 2.3. Wedding and Cultural events- major parts and types of designs essential for wedding. Cultural events/ occasions that require floral art.
- 2.4. Holiday and Seasonal Floral Designs: Creating designs for various holidays and seasons. Floral Arrangements for Corporate clients/ exhibitions. Creating large-scale floral installations for events and exhibitions.

Module 3: Floriculture as agriculture, business and industry, 9 Hrs

- 3.1. Floriculture in India: cut flowers, loose flowers, cut foliages, potted plants,
- 3.2. Steps in starting floriculture business (planning, developing innovative ideas, identifying demand, marketing strategies, taking permits etc). Online and offline floral business. Kerala Start UP mission.
- 3.3. Value Addition: Processing flowers into products like oils, perfumes, and dried arrangements.
- 3.4. Sustainability Practices: Eco-friendly cultivation and certification standards

Module 4. India's Cultural Significance of Flowers 8

- 4.1. Types of bouquets, garland, gajra, veni and rangoli used in India.
- 4.2. Major flowers used in floral offerings in various temples. Flower carpet (pookkalam) of Kerala. Phool Walon Ki Sair of Delhi.
- 4.3. Wild flowers in floral art. Dry flower industry and vegetable carving.
- 4.4. Floral embroidery and Paintings in India. Chikankari of Lucknow. Phool Patti of Rampur.

Module 5. TEACH SPACE (9 hrs):

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 hrs

Advanced Topics in Floriculture: Biotechnology Applications: Advanced Propagation Techniques: Climate Change Adaptation: Strategies for coping with environmental changes.

Practicals 5 hrs

- 1. Visit to floriculture industries
- 2. Exhibition of various types of floral decorations by the students: Dry flower preparation; Bouquets preparation; Wild flower arrangement; Vegetable carving; Preparation of garland, gajra, veni, rangoli etc.

Suggested Assignment Topics- Theory

- 1. Floral art
- 2. Features of a bouquet
- 3. Various floral arts
- 4. Flower carpet in Kerala

Suggested Assignment Topics- Practical

- 1. Bouquet of wild flowers
- 2. Flowervase arrangement
- 3. Exhibitions on flower arrangements

Suggested readings

Sl.	Title/Author/Publishers of the Book specific to the module
No	•
1	Alexander C and Taylor S (2001). Flowers cut and dried: The essential guide to growing, drying
	and arranging
2	Aman A S, (2016). The online startup: How to start a business online leveraging the power of
	Amazon.
3	Baker J L (2023). Blossoming Brilliance: A guide for mastering the art, science and creating
	stunning arrangements for floral symphony for your business.
4	Beener S, (2012). How to open and Operate a Financially Successful Florist and Floral Business
	Online and Offline.
5	Chaudhary S, (2022). The complete guide to start up: How to start a startup in India.
6	Crary C (2020). Flower School: A practical guide to the art of flower arranging.
7	Datta S K (2015). Dry flowers technology and floral craft.
8	Fasust J E and Dole J M, (2021). Cut flowers and foliages (crop production science in
	horticulture).
9	https://khatabook.com/blog/floriculture-business-in-india/
10	https://startupmission.kerala.gov.in/
11	https://www.startupindia.gov.in/
12	Johnson E W, (2007). The art of floral arranging.
13	Kumar H G and Kumar U M S, (2022). Economic contribution of floriculture industry in India.
14	Palma D S, Break into the wedding flower business: start a floral design business from home
15	Sahoo S K and Goswami S S, (2023). How to start a successful start-up company in India.

16	Scace P D, (2001). The floral artists guide: A reference to cult flowers and foliages.
17	Start Your Own florist shop and other floral businesses: Entrepreneur Press
18	Willms, A (2024). How to turn your passion for flowers into profit: Harvesting Happiness and
	Income from your floral harvests, grow, and sell your passion into profitable blooms.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
Field visits	Demonstrations
Reels on floral arts and DIY	

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
 University Examination 	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
 Reports/ presentations/ demonstrations by the students 	10

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. What are the basic parts of a flower?
- 2. Define 'inflorescence' and give an example.
- 3. List two major flowers used in floral art.
- 4. Name one tool essential for floral design.
- 5. What is the principle of 'balance' in floral design?
- 6. Explain the term 'color scheme' in floral arrangements.
- 7. What is Ikebana?
- 8. Name a seasonal floral design for festivals.
- 9. List any two flowers used in temple offerings.
- 10. What is a 'gajra'?
- 11. What is floriculture?
- 12. Define 'value addition' in floriculture.
- 13. What is eco-friendly cultivation?
- 14. Name one certification standard in floriculture.
- 15. What is the Kerala Startup Mission?
- 16. List one online platform for floral business.
- 17. What is 'Chikankari'?
- 18. Define 'Phool Patti'.
- 19. What is vegetable carving and name a plant part used for the art.

20. Describe a flower carpet.

6 Marks Questions:

- 1. Explain the basic parts of a flower and their roles in floral arrangements.
- 2. Discuss the importance of balance and proportion in floral design.
- 3. Describe the significance of color schemes and textures in creating floral compositions.
- 4. Compare and contrast the different types of flower arrangements: Classical, Contemporary, European, and Ikebana.
- 5. Elaborate on the role of floral designs in major life events such as weddings and funerals.

7 Marks Questions:

- 1. Analyze the cultural significance of Pookkalam in Kerala's Onam festival.
- 2. Discuss the considerations involved in designing floral arrangements for corporate events and exhibitions.
- 3. Assess the economic impact of floriculture on Kerala's economy.
- 4. Outline the steps involved in starting a floriculture business, including planning and marketing strategies.
- 5. Explore the cultural practices involving flowers in Indian rituals and festivals, focusing on their symbolic meanings.

14 Marks Questions:

- 1. Discuss the principles of floral design—balance, proportion, harmony, unity, rhythm, focal point, and scale—and explain how they contribute to creating aesthetically pleasing floral arrangements.
- 2. Analyze the cultural significance and design elements of Pookkalam, the traditional floral arrangement created during the Onam festival in Kerala.
- 3. Evaluate the current state and future prospects of the floriculture industry in India, focusing on its economic impact, challenges, and opportunities.
- 4. Examine the role of flowers in Indian cultural practices, focusing on their use in rituals, festivals, and traditional arts.
- 5. Investigate the intersection of floral design principles and the floriculture business, emphasizing how artistic elements influence commercial success.

Employability for the Course / Programme

It is one of the general foundation courses which is very helpful in understanding the diversity of floral arts, so as to start as an entrepreneur in floral arts.

10	ENTREPRENEURSHIP IN BOTANY	KU4SECBOT110
SEC	Semester : 4 Hrs/week : 3 Theory + 0 Practical	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes
CO1	Define entrepreneurship and analyze its significance in economic development
CO2	Evaluate various sources of business ideas and conduct feasibility analyses
CO3	Develop comprehensive business plans incorporating strategic objectives, financial projections, and legal considerations.
CO4	Explore opportunities in botanical entrepreneurship, including the cultivation of medicinal plants, organic farming, and sustainable agricultural practices.

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	V									
CO2			$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$						
CO3							\checkmark	$\sqrt{}$	\checkmark	\checkmark		
CO4									\checkmark	\checkmark	\checkmark	\checkmark

Course Description

This is a GFC SEC course in botany designed for all UG students. The aim of the course is to give basic knowledge Botanical entrepreneurship.

- *First module is giving sparkles to the world of entrepreneurship.*
- Second module is dealing about the business planning and strategies.
- Third module is delves into the vast areas of entrepreneurial botany.
- Fourth module deals with the future perspectives of the field. .

This course will also provide initial induction for the botanical entrepreneurship through the field visits and other first-hand experiences.

- 1. To understand the foundational concepts of entrepreneurship and its role in fostering economic growth.
- 2. To identify and assess potential business opportunities through market analysis and feasibility studies.
- 3. To acquire skills to formulate effective business strategies and plans, considering financial and legal aspects.
- 4. To explore innovative practices in botanical entrepreneurship, focusing on sustainable and eco-friendly ventures.

5. To develop an entrepreneurial mindset that embraces creativity, risk-taking, and problem-solving.

	Credit		Teaching H	Iours	Assessment		
L/T	P/I	Total	L/T/P	CCA	ESE	Total	
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to Entrepreneurship 8hrs

- 1.1.Definition and Importance: Understanding entrepreneurship and its role in economic development.
- 1.2. Characteristics of an Entrepreneur: Key traits and skills of successful entrepreneurs.
- 1.3. Types of Entrepreneurs: Based on motivation, innovation, and business scale.
- 1.4.Entrepreneurial Mindset: Developing creativity, risk-taking, and problem-solving abilities.

Module 2: Business Planning and Strategy 12hrs

- 2.1. Sources of Business Ideas: Identifying opportunities through market gaps, trends, and personal experiences.
- 2.2.Feasibility Analysis: Assessing technical, financial, and market feasibility. SWOT Analysis Business Model Canvas
- 2.3.Business Plan Components: Executive summary, market analysis, organizational structure, product/service offerings, marketing plan, and financial projections. Financial Management: Budgeting, pricing, and cost analysis.
- 2.4. Strategic Planning: Setting objectives, identifying resources, and formulating strategies. Legal Considerations: Business structures, intellectual property rights, and regulatory requirements.

Module 3: Major areas of Botanical Entrepreneurship 7hrs

- 3.1. Cultivation of Medicinal and Aromatic Plants- significance, major resource plants and economics of medicinal plants in India.
- 3.2. Organic Farming, Mushroom Cultivation, Plant Tissue Culture: Biofertilizers
- 3.3. Floriculture and Landscape Gardening; Production Agroforestry and Sustainable Agriculture:
- 3.4. Single Cell Protein (SCP) Secondary Metabolites Production: Fermentation Technology: Plant-Based Bioeconomy Conservation Entrepreneurship

Module 4. Contemporary Issues and Future Trends 9hrs

- 4.1. Understanding IPR: Patents, trademarks, and copyrights in the context of botanical products. Bioethics: Ethical considerations in plant-based research and commercialization.
- 4.2.Marketing Strategies: Digital marketing, retail strategies, and customer engagement. Sales Channels: Exploring online platforms, local markets, and export opportunities.
- 4.3. Sustainable Practices: Eco-friendly and sustainable business models. Understanding global market demands and trends in botanical products. Building connections with industry experts, mentors, and potential collaborators.
- 4.4. Emerging Technologies: Role of AI and IoT in modern botanical enterprises.

Module 5. TEACH SPACE 9hrs

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 hrs

Case study: Success stories of industries on herbal medicines, mushroom cultivation, floriculture, horticulture and biofertilizer production.

Practicals 5 hrs

- 1. Field visits and interaction with botanical entrepreneurs.
- 2. Mushroom cultivation.
- 3. Tissue culture through callus.
- 4. Farm house /garden visits.
- 5. Vegetative propagation.

Suggested Assignment Topics- Theory

- 1. AI and IoT in Botanical entrepreneurships
- 2. Basic steps in mushroom cultivation
- 3. Organic farming
- 4. Composting
- 5. Biofertilisers
- 6. Biopesticides and insecticides
- 7. Tissue culture

Suggested Assignment Topics- Practical

- 1. Use of Mobile applications in Home gardens
- 2. Callus culture using coconut water
- 3. Budding, grafting and Layering in various crop plants.

Suggested readings

Sl.	Title/Author/Publishers of the Book /online resources
No	
1	https://apacwomen.ac.in/learning-resources/botany/BotanyForEntrepreneurship
	<u>Development.pdf</u>
2	https://startupmission.kerala.gov.in/
3	https://www.brainkart.com/article/Entrepreneurial-Botany_38321/#google_vignette
4	https://www.learninsta.com/entrepreneurial-botany/
5	https://www.poddarinstitute.org/articles/entrepreneurial-potential-of-economically-useful-
	<u>plants</u>
6	https://www.researchgate.net/publication/383531157_Entrepreneurial_Botany
7	https://www.startupindia.gov.in/
8	Lokare, P D and Pandya J B (2024). Entrepreneurial Botany. Book Saga
	Publications ISBN 13: 978-8197603839
9	Pathak, S K and Kushwah J S, Entrepreneurial Botany and Skill Development, Nitya
	Publications, Bhopal.
10	Paul, B.(2011). Entrepreneurship and small business. 3rd ed. Basingstoke, Palgrave
	Macmillan.
11	Sen, S, (2024). Bio-entrepreneurship: Employment, Empowerment, Innovation. Career
	Guidance: Choices before You, pp. 189-197, 2024 ISBN 978-81-966693-8-6, Available
	at SSRN: https://ssrn.com/abstract=4813601 or http://dx.doi.org/10.2139/ssrn.4813601

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
Documentaries and reels on	Demonstrations
agriculture, mushroom cultivation	
and other entrepreneurships	
Field visits	

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
• Reports/ presentations/ demonstrations by the students	10

ASSESSMENT RUBRICS	Marks
End Semester Evaluation ESE	
University Examination	50
Continuous Comprehensive Assessment CCA	
• Examinations (multiple choice, true-false, fill-in-the-blank, matching, short answer and critical thinking questions)	10
Writing assignment	5
• Presentations	5
Field reports	5

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. Define entrepreneurship and explain its significance in economic development.
- 2. List and describe three key characteristics of a successful entrepreneur.
- 3. Differentiate between necessity and opportunity-based entrepreneurship.
- 4. What is an entrepreneurial mindset, and why is it crucial for success?
- 5. Identify two common sources of business ideas and explain their importance.
- 6. What is feasibility analysis, and why is it essential before starting a business?

- 7. Outline the primary components of a business plan.
- 8. Explain the role of strategic planning in business success.
- 9. Discuss the significance of legal considerations when starting a business.
- 10. What are medicinal and aromatic plants, and why are they economically significant in India?
- 11. Define organic farming and its advantages over conventional farming methods.
- 12. Explain the process and benefits of mushroom cultivation.
- 13. What is plant tissue culture, and how does it contribute to agriculture?
- 14. Describe the concept of floriculture and its economic impact.
- 15. What is agroforestry, and how does it promote sustainable agriculture?

6 Marks Questions:

- 1. Define entrepreneurship and discuss its significance in economic development.
- 2. Describe the process of strategic planning in business.
- 3. Differentiate between necessity and opportunity-based entrepreneurship.
- 4. Identify and explain three key characteristics of successful entrepreneurs.
- 5. Outline the key components of a business plan.

7 Marks Questions:

- 1. Discuss the significance of cultivating medicinal and aromatic plants in India.
- 2. Discuss various sources of business ideas and their significance.
- 3. Explain the components of a feasibility analysis.
- 4. Explain the concept of an entrepreneurial mindset and its importance.
- 5. Explain the role of biofertilizers in sustainable agriculture.

14 Marks Questions:

- 1. Discuss the role of entrepreneurship in economic development.
- 2. Explain the process of feasibility analysis in business planning, emphasizing its importance in assessing technical, financial, and market viability.
- 3. Analyze the economic significance of cultivating medicinal and aromatic plants in India.
- 4. Evaluate the impact of emerging technologies such as AI and IoT on the future of botanical entrepreneurship, considering both opportunities and challenges.
- 5. Assess the ethical considerations in botanical entrepreneurship, particularly concerning intellectual property rights, bioethics, and sustainable practices.

Employability for the Course / Programme

It is one of the entrepreneurship-oriented SEC courses in Botany which may benefit the stakeholder in the near future; to emerge as an entrepreneur.

11	GARDENING - INDOOR AND OUTDOOR	KU4SECBOT111
SEC	Semester : 4 Hrs/week : 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Outcomes							
CO1	Demonstrate proficiency in selecting appropriate plants and gardening techniques for both indoor and outdoor environments							
CO2	Apply sustainable gardening practices, including soil preparation, composting, mulching, and water conservation methods, to promote environmental sustainability							
CO3	Identify and manage common pests and diseases in garden plants							
CO4	Design and implement specialized gardening systems such as vertical gardens, hydroponics, and terrariums							

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2			$\sqrt{}$	V	V	\checkmark						
CO3							\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4									$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$

Course Description

This is GFC-SEC course in botany designed for all UG students to give basic knowledge in various types indoor and outdoor gardening.

- First module is giving an introduction to gardening.
- Second and third module is dealing with major indoor and outdoor gardening techniques respectively.
- Fourth module is adding some more special techniques in both out-door and in-door gardening.

This course will provide opportunities to start gardening as a serious enterprise.

- 1. To understand the fundamental principles of gardening, including the importance of gardening for personal well-being and environmental sustainability.
- 2. To gain knowledge about various types of gardening.
- 3. To learn the use of essential gardening tools and equipment effectively for various gardening tasks.
- 4. To earn skills in plant parenting.
- 5. To explore advanced gardening techniques to promote sustainable practices.

	Credit		Teaching H	lours	Assessment			
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total	
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75	

COURSE CONTENT

Module 1: Introduction to Gardening 8 Hours

- 1.1.Definition and Importance: Understanding the role of gardening in personal well-being and environmental sustainability.
- 1.2. Types of Gardening: Differentiating between indoor and outdoor gardening.
- 1.3. Basic Terminologies: Soil, compost, mulch, irrigation, etc.
- 1.4. Gardening Tools and Equipment: Overview of essential tools and their uses.

Module 2: Module 2: Indoor Gardening Techniques 10 hours

- 2.1. Salient features of indoor plants, Major indoor plants and their uses for various types of indoor gardens.
- 2.2.Requirements for indoor gardening- Containers and Substrates: Types of pots, containers, and suitable growing media. Lighting Requirements: Natural vs. artificial lighting needs for indoor plants. Watering and Humidity: Best practices for watering and maintaining humidity levels.
- 2.3.Common Indoor Plants and their care and maintenance- succulents, ferns, and other in-house plants.
- 2.4.Indoor Plant Pests and Diseases: Identification and management of common indoor plant issues.

Module 3: Outdoor Gardening Practices 10 hours

- 3.1. Site Selection based on sunlight, wind, and space. Soil Preparation: Testing soil, amending soil, and composting.
- 3.2. Plant Selection: Choosing plants based on climate, soil, and aesthetic preferences. Planting Techniques: Proper planting depths, spacing, and timing.
- 3.3. Watering Systems: Drip irrigation, sprinklers, and manual watering methods. Mulching and Fertilization: Benefits and methods of mulching and fertilizing plants.
- 3.4. Weed and Pest Management: Organic and chemical methods for controlling weeds and pests.

Module 4. Specialized Gardening Techniques 8 hours

- 4.1. Vertical Gardening: Techniques for growing plants upwards using trellises, towers, and wall-mounted systems.
- 4.2. Hydroponics and Aquaponics: Soil-less growing methods and their applications.
- 4.3. Terrariums and Bottle Gardens: Creating and maintaining miniature ecosystems. Bonsai and Topiary: Art of miniature tree cultivation and shaping.

4.4. Organic Gardening: Principles and practices of organic gardening. Water Conservation: Methods to conserve water in gardening practices. Sustainable and Eco-Friendly Gardening

Module 5. TEACH SPACE 9 hrs

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4 hrs

Seasonal Planting: Understanding planting schedules for different seasons.

Climate Considerations: Gardening in various climates and microclimates.

Regional Plant Varieties: Selecting plants suited to specific regions and their growing conditions.

Garden Maintenance: Routine tasks for maintaining a healthy garden.

Practicals 5 hrs

- 1. Building a compost bin, creating a rainwater harvesting system, and constructing a vertical garden.
- 2. Plant Propagation: Techniques for propagating plants from seeds, cuttings, and divisions.

Suggested Assignment Topics- Theory

- 1. Lawn preparation
- 2. Exhibition of indoor and outdoor gardening plants
- 3. Bonsai preparation

Suggested Assignment Topics- Practical

- 5. Terrarium
- 6. Bonsai
- 7. Topiaries
- 8. Vertical gardening

Suggested Readings

Sl. No	Title/Author/Publishers of the Book / online resources
1	Bora T, (2021). How Not To Kill Houseplants
2	Evans C, The Gardener's Handbook
3	Fish M, (1956). We made a Garden.
4	Hawes N H, (2017). Air-Purifying Houseplant and Healthy Housekeeping. Hammersmith Health Books, ISBN: 9781781610831
5	https://archive.org/details/GardeningInIndia
6	https://celkau.in/Agrienterprises/enerprise/30.Landscape%20Gardening/4.%20 COMPONENTS%20OF%20LANDSCAPES%20AND%20GARDENS.pdf
7	https://celkau.in/Agrienterprises/landscape gardening
8	https://celkau.in/Agrienterprises/Vertical farming
9	https://www.nsdcindia.org/scmp/assets/image/996525282-Gardener-PHB- English-ASCI_KMV1.0.pdf
10	https://www.psscive.ac.in/storage/uploads/textbooks/pdf/english/gardener- english-class-11.pdf
11	Leendertz L (2016). My Tiny Indoor Garden. Mark Diacono, London, ISBN: 9781910904992

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals
Field visits	Demonstrations
Documentaries	

ASSESSMENT RUBRICS					
End Semester Evaluation ESE					
University Examination	50				
Continuous Comprehensive Assessment CCA					
Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)					
Writing assignment					
• Reports/ presentations/ demonstrations by the students	10				

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. What is the role of compost in gardening?
- 2. Name two essential tools used for soil preparation.
- 3. What is the primary purpose of using containers in indoor gardening?
- 4. List two common pests that affect indoor plants.
- 5. What is the significance of mulching in outdoor gardening?
- 6. Define drip irrigation and its advantage over traditional watering methods.
- 7. What is hydroponics?
- 8. Name one benefit of vertical gardening.
- 9. What is the difference between organic and chemical fertilizers?
- 10. Explain the term 'sustainable gardening'.

6 Marks Questions:

- 1. Explain the significance of gardening in enhancing personal well-being and promoting environmental sustainability.
- 2. Differentiate between indoor and outdoor gardening, highlighting the unique challenges and benefits of each.
- 3. Define key gardening terms such as soil, compost, mulch, and irrigation, and discuss their roles in successful gardening practices.
- 4. Describe the process of site selection for outdoor gardening, considering factors like sunlight, wind, and space.
- 5. Discuss the importance of soil preparation, plant selection, and appropriate planting techniques in establishing a thriving outdoor garden.

7 Marks Questions:

- 1. Identify essential gardening tools and equipment, and describe their specific functions in maintaining a garden.
- 2. Discuss the characteristics of major indoor plants and their suitability for various types of indoor gardens.

- 3. Outline the requirements for indoor gardening, focusing on containers, substrates, lighting, watering, and humidity levels.
- 4. Provide care and maintenance guidelines for common indoor plants like succulents and ferns.
- 5. Identify common pests and diseases affecting indoor plants and propose effective management strategies.

14 Marks Questions:

- 1. Discuss the significance of indoor gardening in urban environments.
- 2. Explain the principles and practices involved in outdoor gardening.
- 3. Analyze the role of specialized gardening techniques in modern horticulture.
- 4. Evaluate the importance of sustainable gardening practices.
- 5. Assess the challenges and solutions in pest and disease management in gardening.

Employability for the Course / Programme

This SEC course is one of the self-employment oriented courses in Botany which is giving basic and advanced knowledge in outdoor and indoor gardening.

12	MEDICINAL PLANTS OF KERALA	KU4SECBOT11 2
SEC	Semester : 4 Hrs/week : 3 Theory	Credits: 3

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes								
CO1	Understand the historical and cultural significance of medicinal plants in Kerala.								
CO2	Identify and classify major medicinal plants of Kerala.								
CO3	Analyze the pharmacological properties of medicinal plants.								
CO4	Apply sustainable practices in the cultivation and conservation of medicinal plants.								

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$									
CO2				$\sqrt{}$	\checkmark	\checkmark						
CO3							\checkmark	$\sqrt{}$	\checkmark	$\sqrt{}$		
CO4									\checkmark	\checkmark	\checkmark	

Course Description

This is a skill enhancement course in botany designed for all UG students. The aim of the course is to give basic knowledge about the diversity of medicinal plants in Kerala and its utility.

- First module is laying the basics of plant based medicinal practices in Kerala.
- Second module is a pavement to the knowledge on the botanical diversity of our state.
- Third module delves into the pharmacological properties of chemicals present in some selected medicinal plants.
- Fourth module is giving an idea on the cultivation of these plants.

This course will also provide you opportunities to emerge as an entrepreneur by knowing cultivation of medicinal plants of high commercial demand.

- 1. To explore the historical texts and traditional practices related to medicinal plants in Kerala.
- 2. To examine the botanical diversity of medicinal plants in Kerala.
- 3. To investigate the pharmacological properties of bioactive compounds in medicinal plants.
- 4. To understand the cultivation methods and sustainable practices for medicinal plants.
- 5. To discuss the role of institutions and government initiatives in promoting medicinal plant research and conservation.
- 6. To do more intensive experiments on the subject to facilitate an interdisciplinary profession/enterprise/entrepreneurship

(Credit		Teaching H	lours	Ass	ıt	
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to Medicinal practices in Kerala (10 hours)

- 1.1.Definition and Significance of medicinal plants: Role in traditional and modern medicine.
- 1.2.Overview of the use of medicinal plants in ancient texts like *Hortus Malabaricus* and *Ashtanga Hridayam*. Ayurveda and Kalari Chikilsa.
- 1.3. Overview of Kerala's rich plant diversity, focusing on medicinal species. Significance of endemic medicinal plants. RET Plants and conserved medicinal plants.
- 1.4. Scope and Relevance: Importance of medicinal plants in Kerala's cultural heritage and contemporary healthcare. Kottakkal Arya Vaidya Sala and Adivasi medicines.

Module 2: Botanical Diversity of Kerala (9 hours)

- 2.1.Traditional Knowledge and Ethnobotany Folk Medicine: Exploration of traditional healing practices in Kerala. Ethnobotanical Surveys: Methodologies for documenting traditional knowledge and plant usage.
- 2.2. Major plant parts used as medicine- whole plant, root, bark of root and stem, stem, leaf, flower, fruit and seed.
- 2.3.Plant and medicinal uses Dasapushpam, Thriphala and Dasamoolam.
- **2.4.**Examples for Major medicines of plant origin in Modern Medicine and Ayurveda.

Module 3: Pharmacological Properties (9 hours)

- 3.1. Active Compounds: Identification of bioactive compounds in medicinal plants. Examples of alkaloids, flavonoids, tannins, saponins, terpenoids, and essential oils used as therapeutic agents.
- 3.2. Pharmacological Activities: Antimicrobial, anti-inflammatory, antioxidant, and anticancer properties.
- 3.3. Major Institutes involved in Medicinal plant research and their success stories: CIMAP, Lucknow; CMPR, Kottakal, JNTBGRI, Palode.
- 3.4. Case Study: Arogyapacha plant (Trichopus zeylanicus ssp.travancoricus),

Module 4: Cultivation and Sustainable Practices 8hrs

- 4.1. Agro-techniques: Best practices for cultivating medicinal plants suited for Kerala's homesteads.
- 4.2. Sustainable Harvesting: Methods to ensure the sustainability of medicinal plant resources.
- 4.3. Conservation Efforts: Strategies for the conservation of medicinal plant species in Kerala
- 4.4. Government Initiatives: Overview of programs by the State Medicinal Plants Board Kerala to promote cultivation and conservation.

Module 5. TEACH SPACE (9 hrs):

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 5 hrs

Integration with Modern Medicine: Exploring how traditional medicinal plants are being integrated into contemporary healthcare systems.

Phytochemical Studies: Research on the chemical constituents of medicinal plants and their therapeutic potentials.

Practicals 4 hrs

- 1. Field Visits: Organized trips to botanical gardens, research stations, and local farms.
- 2. Hands-on Experience: Practical sessions on identifying, harvesting, and preparing medicinal plant samples.
- 3. Documentation Skills: Training in botanical documentation and herbarium techniques
- 4. Research Projects: Students undertake projects on specific medicinal plants or related topics.
- 5. Presentation: Presentation of findings and discussions.

Suggested Assignment Topics- Theory

- 1. Chemical composition of thriphala
- 2. Chemical properties of dasamoolam plants
- 3. Daspushpam and their chemistry
- 4. Plant parts used as medicines with examples

Suggested Assignment Topics- Practical

- 1. Collection of medicinal plants
- 2. Collection of recipes of medicined
- 3. Cultivation of medicinal plants

Suggested readings

Sl. No	Title/Author/Publishers of the Book / online resources
1	https://agritech.celkau.in/agriculture/medicinal
2	https://bsi.gov.in/page/en/medicinal-plant-database
3	https://envis.frlht.org/implad
4	https://www.smpbkerala.in/herbal-data/
5	https://www.kfri.res.in/medicinal_plants.asp
6	Indian Council of Agricultural Research (ICAR), Textbook of Medicinal and
	Aromatic Plants
7	Joshi M C, Hand Book of Indian Medicinal Plants
8	Khare C P, Indian Medicinal Plants: An Illustrated Dictionary
9	Naik V N, Identification of Common Indian Medicinal Plants
10	Peter, K.V. Alice Kurian and M. Asha Sankar, Medicinal Plants
11	Warrier, P.K., V.P.K. Nambiar, P.M. Ganapathy, Some Important Medicinal
	Plants of the Western Ghats, India
12	https://agritech.celkau.in/agriculture/medicinal

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
➤ Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practical

ASSESSMENT RUBRICS	Marks			
End Semester Evaluation ESE				
University Examination	50			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

Sample Questions.

2 Marks Questions:

- 1. Name any two ancient texts on medicinal plants.
- 2. Who authored *Hortus Malabaricus*?
- 3. Name any two RET plants.
- 4. What is the significance of endemic medicinal plants?
- 5. List out any two major contributions of Kottakkal Arya Vaidya Sala.
- 6. Write a short note on Adivasi medicines.
- 7. What is ethnobotany?
- 8. Name a plant with medically significant bark.
- 9. Give the names of two plants of Dasapushpam.
- 10. What is Triphala?
- 11. Give the common name and botanical name of a plant in Dasamoolam.
- 12. Name a major medicine of plant origin in modern medicine.
- 13. What are bioactive compounds?
- 14. What is the major contribution of JNTBGRI in the field of ethnobotany?
- 15. Expand CMPR?
- 16. What are agro-techniques?
- 17. What is sustainable harvesting?

6 Marks Questions:

- 1. Examine the contributions of research institutes like CIMAP and JNTBGRI in advancing medicinal plant research.
- 2. Explain the role of traditional texts like *Ashtanga Hridayam* in preserving Ayurvedic knowledge in Kerala.
- 3. Integrate knowledge from all modules to propose a sustainable model for cultivating and conserving medicinal plants in Kerala.
- 4. Describe the ethnobotanical importance of Dasapushpam in Kerala's cultural and medicinal practices.
- 5. Discuss sustainable harvesting methods for medicinal plants to ensure their conservation.

7 Marks Ouestions:

1. Analyze the therapeutic uses of common plant parts such as roots, stems, and leaves in traditional medicine.

- 2. Assess the impact of government initiatives by the State Medicinal Plants Board Kerala on promoting medicinal plant cultivation.
- 3. Critically analyze the challenges and opportunities in integrating traditional medicinal practices with modern pharmacological research.
- 4. Discuss the significance of *Hortus Malabaricus* in documenting the medicinal plants of Kerala.
- 5. Evaluate the pharmacological activities of bioactive compounds like alkaloids and flavonoids found in medicinal plants.

14 Marks Questions:

- 1. Discuss their contributions to traditional medicine and their relevance in contemporary healthcare practices.
- 2. Explain the role of Dasapushpam in cultural practices, traditional medicine and its medicinal uses.
- 3. Discuss the therapeutic potentials of medicinal plants of Kerala and give examples for scientific validation of their medicinal properties.
- 4. Discuss the role of agro-techniques, sustainable harvesting methods, and government initiatives in promoting medicinal plant resources.

Employability for the Course / Programme

This is a GFC SEC course in botany that helps to initiate a startup in medicinal plant cultivation or medicated product preparation.

13	MUSHROOM CULTIVATION AND MARKETING	KU4SECBOT11 3
SEC	Semester : 4 Hrs/week : 3 Theory	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course	Course Outcomes						
CO1	Understand the scope of mushroom cultivation in economic growth of rural people.						
CO2	Gaining knowledge in theoretical and practical aspects of mushroom cultivation						
CO3	Basic knowledge in mushroom production and marketing.						
CO4	Practical skills in cultivation, spawn production and setting up of lab for mushroom business.						

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	$\sqrt{}$	\checkmark									
CO2			\checkmark	\checkmark	\checkmark	\checkmark						
CO3							\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
CO4								\checkmark	\checkmark	~	\checkmark	

Course Description

This is an SEC course in botany designed for all UG students with an aim to give basic knowledge in Mushroom cultivation and marketing.

- First module is a foundation to mushroom cultivation techniques.
- Second module delves into the mushroom cultivation steps and processes.
- Third module is dealing with post harvesting processes and value addition.
- Fourth module is giving a basic knowledge in mushroom marketing and entrepreneurship.

This course will provide opportunities to visit successful entrepreneurs in mushrrom cultivations and can ignite the entrepreneur mind set in the student.

Course Objectives:

- 1. To study theoretical and practical ideas
- 2. To study the crop management practices
- 3. To study the post -harvest management
- 4. To equip the students for commercial propagation for getting self employment and for giving employment to others

Credit Teaching Hours Assessment	
----------------------------------	--

L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to Mushroom Cultivation 6 hrs

- 1.1. History and scope of Mushroom cultivation.
- 1.2. Five kingdom classification and general features of fungi. Mushroom Biology: Life cycle, morphology, and taxonomy.
- 1.3.Mushroom- general characters, edible and poisonous mushrooms. Nutritional and medicinal importance.
- 1.4. Morphology of *Agaricus bisporus* (Button), *Pleurotus* spp. (Oyster), *Volvariella volvacea* (Paddy Straw), and *Ganoderma*.

Module 2: Cultivation practices: 10 hrs

- 2.1. Cultivation Systems: Indoor vs. outdoor, low-cost and high-tech setups.
- 2.2.Spawn Production: Methods of preparation and sterilization. Substrate Preparation: Composting techniques for different substrates like paddy straw, sugarcane trash, and banana leaves.
- **2.3.**Inoculation and Incubation: Techniques and environmental conditions. Casing and Fruiting: Role of casing materials and inducing fruiting.
- **2.4.**Conditions for cultivation: Environmental Control: Temperature, humidity, and light management. Pest and Disease Management: Identification and control measures.

Module 3: Harvesting and Post-Harvest Handling 10 hours

- 3.1. Harvesting and Packaging: Optimal timing and methods of harvesting. Sorting, grading, and packaging.
- 3.2. Storage Methods: Refrigeration, canning, drying, and preservation in salt solutions.
- 3.3. Value-Added Products: Preparation of mushroom-based products like pickles, papads, and powders.
- 3.4. Utilization of Spent Substrate: Vermicomposting and organic farming applications.

Module 4: Mushroom Marketing and Entrepreneurship (10 hours)

- 4.1. Government Schemes and Support: Subsidies, training programs, and certification for Mushroom cultivation and marketing: Start up preparation, project proposal, licensing procedure and registration.
- 4.2. Entrepreneurial Skills: Business planning, risk management, and scaling operations.
- 4.3. Market Dynamics: Demand and supply analysis in local and international markets. Marketing Strategies: Branding, packaging, and labeling.
- 4.4. Distribution Channels: Retail, wholesale, and online platforms. Cost-Benefit Analysis: Financial planning and profitability.

Module 5. TEACH SPACE (9 hrs) This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 3 hrs

Case study: Successful stories of Mushroom Cultivation and value addition

Practicals 6 hrs

- 1. Spawn Preparation: Hands-on demonstration of spawn production.
- 2. Substrate Preparation: Composting and sterilization techniques.

- 3. Inoculation and Incubation: Setting up mushroom beds and monitoring environmental conditions.
- 4. Harvesting and Post-Harvest Handling: Practical experience in sorting, grading, and packaging.
- 5. Field Visit: Tour of a local mushroom farm to observe commercial operations.

Suggested Assignment Topics- Theory

- 1. Spawn production
- 2. Value added products of mushrooms
- 3. Canning and packing strategies
- 4. Toxins from mushrooms
- 5. Fungal taxonomy

Suggested Assignment Topics- Practical

- 1. Packaging of spawn
- 2. Composting of mushroom spent substrate
- 3. Collection of data on demand and supply ratio

Suggested Readings

	seed Itelatings								
Sl.	Title/Author/Publishers of the Book specific to the module								
No									
1	Ashok Agarwal, Yashpal Sharma, Esha Jangra (2022): A Text Book on								
	Mushroom cultivation Theory and Practices								
2	http://celkau.in/Agrienterprises/enerprise								
3	http://celkau.in/Agrienterprises/enerprise								
4	https://agritech.tnau.ac.in/farm_enterprises/Farm%20enterprises_%20Mush								
	room_Bed%20preparation.html								
5	Marimuthu, T., Krishnamoorthy, A.S., Sivaprakasam, K., & Jayarajan, R.								
	(1991). Oyster Mushrooms. Department of Plant Pathology, Tamil Nadu								
	Agricultural University, Coimbatore.								
6	Nita B (2000): Handbook of mushrooms. VolI and II. Oxford and IBH								
	publishing Co. Pvt Ltd. NewDelhi								
7	Pandey RK and Ghosh SK 1996: A handbook of Mushroom cultivation.								
	Emkay publication								
8	Swaminathan, M. (1990). Food and Nutrition. Bappeo, The Bangalore								
	Printing and Publishing Co. Ltd.								
9	Tewari, P and Kapoor S C (1998): Mushroom cultivation, Mittal Publication,								
	New Delhi								

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION
Hands-on experiments	Lecturing
Collaborative learning-Group	> ICT
discussion	Practicals

End Semester Evaluation ESE				
University Examination				
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. What is the historical significance and current scope of mushroom cultivation?
- 2. Explain the Five Kingdom Classification and general features of fungi.
- 3. Describe the life cycle, morphology, and taxonomy of mushrooms.
- 4. Differentiate between edible and poisonous mushrooms, highlighting their general characteristics.
- 5. Discuss the nutritional and medicinal importance of mushrooms.
- 6. Compare the morphology of Agaricus bisporus, Pleurotus spp., Volvariella volvacea, and Ganoderma.
- 7. Contrast indoor and outdoor mushroom cultivation systems, including low-cost and high-tech setups.
- 8. Outline the methods of spawn production and sterilization techniques.
- 9. Explain the composting techniques for preparing substrates like paddy straw, sugarcane trash, and banana leaves.
- 10. Discuss the techniques for inoculation, incubation, casing, and inducing fruiting in mushroom cultivation.

6 Marks Questions:

- 1. Discuss the historical development and current scope of mushroom cultivation. How has it evolved from traditional practices to modern commercial production?
- 2. Explain the Five Kingdom Classification system with a focus on fungi. Highlight the general features that distinguish fungi from other kingdoms.
- 3. Explain the composting techniques for preparing substrates like paddy straw, sugarcane trash, and banana leaves. How do these substrates influence mushroom growth?
- 4. Discuss the inoculation and incubation processes in mushroom cultivation. What are the optimal environmental conditions for these stages?
- 5. Describe the role of casing materials in mushroom cultivation. How do they influence fruiting and overall yield?

7 Marks Questions:

- 1. Describe the life cycle and morphological characteristics of mushrooms. How do these features contribute to their growth and reproduction?
- 2. Differentiate between edible and poisonous mushrooms, emphasizing their general characteristics. Provide examples and discuss the importance of proper identification.
- 3. Analyze the nutritional and medicinal significance of mushrooms. How do their bioactive compounds contribute to health benefits?

- 4. Compare and contrast indoor and outdoor mushroom cultivation systems. Discuss the advantages and disadvantages of low-cost and high-tech setups.
- 5. Outline the methods of spawn production and sterilization techniques. Why are these steps crucial for successful mushroom cultivation?

14 Marks Questions:

- 1. Discuss the historical development and current scope of mushroom cultivation. How has it evolved from traditional practices to modern commercial production?
- 2. Compare and contrast indoor and outdoor mushroom cultivation systems. Discuss the advantages and disadvantages of low-cost and high-tech setups.
- 3. Explain the optimal timing and methods of harvesting mushrooms. How do sorting, grading, and packaging affect the quality and shelf life of the produce?
- 4. Evaluate the role of government schemes and support in promoting mushroom cultivation and marketing. How do subsidies, training programs, and certification contribute to the industry's growth?
- 5. Propose a comprehensive model integrating traditional knowledge, modern cultivation techniques, and sustainable practices for mushroom farming. How can this model enhance productivity and environmental responsibility?

Employability for the Course / Programme

It is one of the courses in botany which is very helpful for the student to start a life as an entrepreneur.

14	PLANT TISSUE CULTURE LAB SETUP FOR COMMERCIAL PRODUCTION	KU4SECBOT11 4
SEC	Semester : 4 Hrs/week : 3 Theory	Credits: 3

Course Pre-requisite:

- 1. Knowledge in Biology at 10th Standard
- 2. Ability to write examination in English

Course Outcomes					
CO1	Understand the scope of tissue culture as an industry				
CO2	Understand the different steps in tissue culture lab setting up				
CO3	Practical skills in tissue culture				
CO4	Ability to do start up business in tissue culture				

Mapping of Course Outcomes to PSOs/Pos

	PSO1	PSO2	PSO3	PSO4	PSO5	PSO6	PSO7	PSO8	PSO9	PSO10	PSO11	PSO12
CO1	$\sqrt{}$	V	$\sqrt{}$									
CO2			\checkmark	$\sqrt{}$	\checkmark	\checkmark						
CO3							\checkmark	\checkmark	$\sqrt{}$	\checkmark		
CO4								V	V	V	$\sqrt{}$	

Course Description

This SEC course is designed for all UG students to give basic knowledge about the techniques in tissue culture and its commercialization.

- First module is introducing the fundamentals of tissue culture.
- Second module is related to the design and lay out of a tissue culture lab.
- Third module is igniting the idea of entrepreneur mindset to start a venture in tissue culture.
- Fourth module giving the background of certification and legal aspects of tissue culture commercialization.

This course will provide opportunities to study all aspects in tissue culture commercialization through the setting up of a lab.

Course Objectives:

- 1. To equip the students for commercial propagation for starting up of enterprises on tissue culture.
- 2. Understand the scope of tissue culture industry.
- 3. To study different techniques in plant tissue culture.
- 4. To develop practical skills in tissue culture

(Credit		Teaching H	lours	Assessment		
L/T	P/I	Total	L/T/P	Total	CCA	ESE	Total
3	0	3	3+0+0 (45+0+0)	3 (45)	25	50	75

COURSE CONTENT

Module 1: Introduction to tissue culture: 7 hrs

- 1.1. Overview of Plant Tissue Culture: History, principles, and applications in agriculture and horticulture.
- 1.2. Terms related to Tissue culture: totipotency, Differentiation, redifferentiation, Dedifferentiation, explant and callus.
- 1.3. Sterilization Techniques: Chemical, Heat, Autoclave, HEPA filters and Laminar Airflow. methods for sterilizing plant materials and culture media.
- 1.4.Basic steps in plant tissue culture: explant selection, establishment of culture, multiplication, rooting, hardening in green house and field.

Module 2: Laboratory Design and Layout of a Tissue Culture Unit 8 hrs

- 2.1.Infrastructure requirements for a tissue culture laboratory- Space for equipment, Incubation room with proper temperature, light and humidity; working space as wet lab.
- 2.2. Planning the physical space for a tissue culture lab, including clean rooms, laminar flow hoods, and sterilization areas.
- 2.3. Equipment and instruments necessary for tissue culture operations. Chemicals and media formulations required for culture maintenance. Importance of proper glassware and sterilization techniques.
- 2.4. Composition of Culture Media: Murashige and Skoog (MS) medium and its variants. Role of Plant Growth Regulators: Understanding the influence of auxins, cytokinins, and other hormones on plant development.

Module 3: Scaling Up and Commercialization of Tissue Culture 13 hours

- 3.1.Micropropagation Techniques: Methods for large-scale propagation of plants such as banana, orchids, and medicinal plants.
- 3.2. Hardening and Acclimatization: Techniques for transferring in vitro plants to ex vitro conditions.
- 3.3.Quality Control and Genetic Fidelity: Ensuring uniformity and disease-free status of tissue-cultured plants.
- 3.4. Commercial Aspects: Setting up a commercial tissue culture laboratory, including cost analysis, marketing strategies, and regulatory requirements.

Module 4. Certification procedure and starting of commercial production: 8hrs

- 4.1. Safety Protocols and Regulatory Compliance: Implementing safety measures and adhering to local and international regulations.
- 4.2. Certification procedures and regulations for commercial tissue culture production. 4.3. Steps involved in starting a tissue culture business in India (planning, developing innovative ideas, identifying demand, marketing strategies, taking permits etc.).
- 4.4. Funding sources and financial planning for establishing a tissue culture unit.

Module 5. TEACH SPACE (9 hrs):

This module is having a list of suggested activities that helps to achieve the aim, objectives and outcome of the course; which will be determined by the concerned teacher. Assessment for this module is *strictly internal*.

Theory 4hrs

- 1. Case Studies: Analysis of successful commercial tissue culture operations and lessons learned.
- 2. Tissue culture of medicinal plants; tissue culture for secondary metabolites.

Practicals 5 hrs

- 1. Media Preparation: Students will prepare MS medium and other media formulations.
- 2. Sterilization Techniques: Demonstrations on sterilizing plant material and culture vessels.
- 3. Culture Initiation: Initiating cultures from various explants.
- 4. Hardening Techniques: Transferring plants from in vitro to ex vitro conditions. Project
- 5. Work: Students will design a business plan for establishing a tissue culture laboratory, including market analysis and financial projections
- 6. Field visit tissue culture lab

Suggested Assignment Topics- Theory

- 1. Various explants used in crops
- 2. Various culture media and its composition
- 3. Protocol for various types of tissue culture callus, anther, etc

Suggested Assignment Topics- Practical

- 1. Callus development from various crop plants
- 2. Autoclaving demonstration

Suggested Readings

Sl. No	Title/Author/Publishers of the Book /ONLINE resources
1	Bajaj, Y.P.S. (1986). Biotechnology in Agriculture and Forestry: Volume 1, High-
	Tech and Micropropagation I. Springer.
2	Bajaj, Y.P.S. (1991). Biotechnology in Agriculture and Forestry: Volume 16,
	Medicinal and Aromatic Plants II. Springer.
3	Gamborg, O. L., Miller, R. A., & Ojima, K. (1968). Nutrient Requirements of
	Suspension Cultures of Soybean Root Cells. Experimental Cell Research, 50(1), 151-
	158.
4	George, E.F., Hall, M.A., & De Klerk, G.J. (2008). Plant Propagation by Tissue
	Culture. Springer.
5	Gupta, P.K. (1996). <i>Elements of Biotechnology</i> . Rastogi Publications.
6	Hammond, J., McGarvey, B., & Yusibov, V. (2000). <i>Plant Biotechnology: Recent</i>
	Advances. Springer.
7	Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and
	bioassays with tobacco tissue cultures. <i>Physiologia Plantarum</i> , 15(3), 473-497.
8	Plant Tissue Culture Protocol Database: http://www.plantcellculture.org/
9	Prakash, J., & Rao, J. (2010). Plant Tissue Culture: Theory and Practice. Universities
	Press.
10	Purohit, S. S., & Mukherjee, P. K. (2003). Modern Techniques in Plant
	Biotechnology. I. K. International Publishing House Pvt. Ltd.

11	Rajasekaran, T., & Sathyanarayana, B. N. (2019). Plant Tissue Culture: Theory and
	Practice. New Age International.
12	Skoog, F., & Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symposia of the Society for Experimental Biology, 11, 118-130.
13	Thakur, M. (2008). Biotechnology: Microbes and Microbial Technology. Anmol Publications Pvt. Ltd.

TEACHING LEARNING STRATEGIES	MODE OF TRANSACTION			
Hands-on experiments	Lecturing			
Collaborative learning-Group	> ICT			
discussion	Practicals			
Field visits	Demonstration			
Documentaries				

ASSESSMENT RUBRICS				
End Semester Evaluation ESE				
University Examination	50			
Continuous Comprehensive Assessment CCA				
• Examinations (multiple choice, true-false, fill-in- the-blank, matching, short answer and critical thinking questions)	10			
Writing assignment	5			
• Reports/ presentations/ demonstrations by the students	10			

Sample Questions to test Outcomes.

2 Marks Questions:

- 1. What is totipotency in plant cells?
- 2. Define explant in the context of tissue culture.
- 3. What is callus formation in plant tissue culture?
- 4. Explain the term 'hardening' in tissue culture.
- 5. What is the role of a laminar airflow hood in a tissue culture laboratory?
- 6. Why is sterilization crucial in tissue culture laboratories?
- 7. What is Murashige and Skoog (MS) medium?
- 8. Describe micropropagation in tissue culture.
- 9. What is the importance of quality control in tissue culture?
- 10. What are the steps involved in starting a tissue culture business in India?

6 Marks Questions:

1. Describe the sterilization techniques used in plant tissue culture laboratories, including chemical methods, heat sterilization, autoclaving, HEPA filters, and laminar airflow.

- 2. Outline the basic steps involved in plant tissue culture, from explant selection to hardening in the greenhouse and field.
- 3. Discuss the infrastructure requirements for establishing a plant tissue culture laboratory, including space for equipment, incubation rooms, and wet lab areas.
- 4. Discuss micropropagation techniques for large-scale propagation of crop plants
- 5. Define and differentiate between terms such as differentiation, dedifferentiation, redifferentiation, explant, and callus in the context of plant tissue culture

7 Marks Questions:

- 1. Explain the principle of totipotency in plant cells and its significance in tissue culture.
- 2. Explain the importance of proper laboratory design, including clean rooms, laminar flow hoods, and sterilization areas, in maintaining aseptic conditions.
- 3. List the essential equipment and instruments necessary for tissue culture operations and the role of proper glassware and sterilization techniques.
- 4. Describe the composition of Murashige and Skoog (MS) medium and its variants, and the role of plant growth regulators in influencing plant development.
- 5. Explain the process of hardening and acclimatization in tissue culture, and the importance of quality control and genetic fidelity in commercial production.

14 Marks Questions:

- 1. Discuss the historical development and principles of plant tissue culture. How have advancements in this field influenced agricultural and horticultural practices?
- 2. Explain the essential infrastructure requirements for establishing a plant tissue culture laboratory. How do factors like space, equipment, and environmental control contribute to successful tissue culture operations?
- 3. Evaluate the challenges and strategies involved in scaling up plant tissue culture for commercial production. Discuss the role of micropropagation, hardening, and quality control in this process.
- 4. Outline the certification procedures and regulatory requirements for establishing a commercial tissue culture production unit. How do safety protocols and compliance with regulations ensure the quality and success of the venture?

Employability for the Course / Programme

This is one of the SEC courses which is intended to help the stakeholder to initiate a startup in tissue culture and to become an entrepreneur.

