

# **KANNUR UNIVERSITY**

# FOUR YEAR UNDERGRADUATE PROGRAMME

# **SYLLABUS**

# **COMPUTATIONAL MATHEMATICS**

(Effective from 2024 admissions)

# KANNUR UNIVERSITY VISION AND MISSION STATEMENTS

# Vision

To establish a teaching, residential and affiliating University and to provide equitable and just access to quality higher education involving the generation, dissemination and a critical application of knowledge with special focus on the development of higher education in Kasargode and Kannur Revenue Districts and the Manandavady Taluk of Wayanad Revenue District.

### Mission

- To produce and disseminate new knowledge and to find novel avenues for application of such knowledge.
- To adopt critical pedagogic practices which uphold scientific temper, the uncompromised spirit of enquiry and the right to dissent.
- To uphold democratic, multicultural, secular, environmental and gender sensitive values as the foundational principles of higher education and to cater to the modern notions of equity, social justice and merit in all educational endeavours.
- To affiliate colleges and other institutions of higher learning and to monitor academic, ethical, administrative and infrastructural standards in such institutions.
- To build stronger community networks based on the values and principles of higher education and to ensure the region's intellectual integration with national vision and international standards.
- To associate with the local self-governing bodies and other statutory as well as non-governmental organizations for continuing education and also for building public awareness on important social, cultural and other policy issues.

# INTRODUCTION

# Kannur University – Four Year Undergraduate Programme: Backdrop and Context

The implementation of the Four-Year Undergraduate Programme (FYUGP) has been driven by the pressing need to address contemporary challenges ensuring responsive changes to the evolving needs of students, industry, and society at large. Recognizing the curriculum as the cornerstone of any education system, it requires regular refinement to align with evolving socio-economic factors. Higher education must provide students with practical and technical skills relevant to their fields of interest, necessitating the development of a job-oriented curriculum. Despite significant increases in access and expansion of higher education over the years, concerns persist regarding the quality and relevance of educational outcomes, particularly in terms of employability skills. As the world becomes increasingly interconnected, our education system must evolve to instill 21<sup>st</sup>-century skills, enabling students not only to survive but to thrive in this dynamic environment. Moreover, there is a growing need for higher education institutions to embrace social responsibility and contribute to the development of a knowledge society capable of driving sustainable development through innovation. With the central objective of fostering a robust knowledge society to support a knowledge economy, the Government of Kerala has initiated steps to reform higher education. Accordingly, three commissions were established to suggest reforms in higher education policy, legal and regulatory mechanisms, and evaluation and examination systems. It is within this context that a comprehensive reform of the undergraduate curriculum has been proposed, leading to the restructuring of the Four-Year Undergraduate Programme.

# **KANNUR UNIVERSITY**

# **PROGRAMME OUTCOMES**

- **PO1:** Critical Thinking and Problem-Solving-Apply critical thinking skills to analyze information and develop effective problem-solving strategies for tackling complex challenges.
- **PO2:** Effective Communication and Social Interaction-Proficiently express ideas and engage in collaborative practices, fostering effective interpersonal connections.
- **PO3:** Holistic Understanding-Demonstrate a multidisciplinary approach by integrating knowledge across various domains for a comprehensive understanding of complex issues.
- **PO4:** Citizenship and Leadership-Exhibit a sense of responsibility, actively contribute to the community, and showcase leadership qualities to shape a just and inclusive society.
- **PO5: Global Perspective**-Develop a broad awareness of global issues and an understanding of diverse perspectives, preparing for active participation in a globalized world.
- **PO6:** Ethics, Integrity and Environmental Sustainability-Uphold high ethical standards in academic and professional endeavors, demonstrating integrity and ethical decision-making. Also acquire an understanding of environmental issues and sustainable practices, promoting responsibility towards ecological well-being.
- **PO7:** Lifelong Learning and Adaptability-Cultivate a commitment to continuous selfdirected learning, adapting to evolving challenges, and acquiring knowledge throughout life.

# PREFACE

Computational Mathematics focuses on using numerical methods and algorithms to solve mathematical problems and perform mathematical computations with the aid of computers. It bridges the gap between theoretical mathematics and practical applications in various fields, including science, engineering, finance, and more. The computational mathematics bachelor degree combines the beauty and logic of mathematics with the application of today's fastest and most powerful computers.

The skills one learn in the Computational Mathematics Degree can be applied to everyday life, from computing security and telecommunication networking to routes for school buses and delivery companies. The degree provides Computational Mathematics courses such as Calculus, Differential equations, Graph theory, Abstract and Linear Algebra, Mathematical Modeling, Numerical Analysis.

> Dr. C.P. Santhosh Chairman UG Board of Studies in Mathematics Kannur University

# **PROGRAMME SPECIFIC OUTCOMES**

- **PSO1:** Recall basic facts about mathematics and able to display knowledge of conventions such as notations, terminology.
- **PSO2:** Abstract, rigorously model and analyze a variety of problems using appropriate mathematical and computational concepts.
- **PSO3:** Apply knowledge and skills to translate information presented verbally into mathematical form, select and use appropriate mathematical formulae or techniques in order to process the information and draw relevant conclusion.
- **PSO4:** Formulate real world problems into mathematical models and find solutions.
- **PSO5:** Develop proficiency in using mathematical softwares and programming Languages.
- **PSO6:** Understand the impact of solutions in economical, societal and environmental contexts
- **PSO7:** Develop a positive attitude towards mathematics as an interesting and valuable subject of study.

# KANNUR UNIVERSITY FOUR YEAR UNDERGRADUATE PROGRAMME COMPUTATIONAL MATHEMATICS HONOURS/HONOURS WITH RESEARCH PROGRAMME STRUCTURE

| B.Sc       | . Compu | utational Math | iema     | tics Pathway Courses (2024          | admi    | ssion on                    | wards)              |
|------------|---------|----------------|----------|-------------------------------------|---------|-----------------------------|---------------------|
| SI.<br>No. | Level   | Course Code    | Semester | Name of course                      | Credits | Major<br>Pathway<br>Courses | Whether<br>Elective |
|            | •       | l Year         |          |                                     |         |                             |                     |
| 1          | 100-199 | KU1DSCCMT101   | Ι        | Computational Differential Calculus | 4       | 1                           |                     |
| 2          | 100-199 | KU2DSCCMT101   | П        | Computational Integral Calculus     | 4       | 2                           |                     |
|            |         | ll Year        |          |                                     |         |                             |                     |
| 3          | 200-299 | KU3DSCCMT201   |          |                                     | 4       | 3                           |                     |
| 4          | 200-299 | KU3DSCCMT202   |          |                                     | 3+1     | 4                           |                     |
| 5          | 200-299 | KU4DSCCMT201   | IV       |                                     | 3+1     | 5                           |                     |
| 6          | 200-299 | KU4DSCCMT202   | IV       |                                     | 3+1     | 6                           |                     |
| 7          | 200-299 | KU4DSCCMT203   | IV       |                                     | 3+1     | 7                           |                     |
|            |         | III Year       |          |                                     |         |                             |                     |
| 8          | 300-399 | KU5DSCCMT301   | V        |                                     | 4       | 8                           |                     |
| 9          | 300-399 | KU5DSCCMT302   | V        |                                     | 3+1     | 9                           |                     |
| 10         | 300-399 | KU5DSCCMT303   | V        |                                     | 3+1     | 10                          |                     |
| 11         | 300-399 | KU5DSECMT301   | V        |                                     | 4       | 11/12(a)                    | Elective            |
| 12         | 300-399 | KU5DSECMT302   | V        |                                     | 4       | 11/12(b)                    | Elective            |
| 13         | 300-399 | KU5DSECMT303   | V        |                                     | 4       | 11/12(c)                    | Elective            |
| 14         | 300-399 | KU5DSECMT304   | V        |                                     | 4       | 11/12(d)                    | Elective            |
| 15         | 300-399 | KU5DSECMT305   | V        |                                     | 4       | 11/12(e)                    | Elective            |
| 16         | 300-399 | KU5DSECMT306   | V        |                                     | 4       | 11/12(f)                    | Elective            |
| 17         | 300-399 | KU6DSCCMT301   | VI       |                                     | 4       | 13                          |                     |
| 18         | 300-399 | KU6DSCCMT302   | VI       |                                     | 3+1     | 14                          |                     |
| 19         | 300-399 | KU6DSCCMT303   | VI       |                                     | 3+1     | 15                          |                     |
| 20         | 300-399 | KU6DSECMT301   | VI       |                                     | 4       | 16/17(a)                    | Elective            |
| 21         | 300-399 | KU6DSECMT302   | VI       |                                     | 4       | 16/17(b)                    | Elective            |
| 22         | 300-399 | KU6DSECMT303   | VI       |                                     | 4       | 16/17(c)                    | Elective            |
| 23         | 300-399 | KU6DSECMT304   | VI       |                                     | 4       | 16/17(d)                    | Elective            |

Kannur University: FYUP in Computational Mathematics 2024

| 24 | 300-399                                                                                                    | KU6DSECMT305  | VI   |                                                                                     | 4  | 16/17(e)        | Elective |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------|---------------|------|-------------------------------------------------------------------------------------|----|-----------------|----------|--|--|--|--|
| 25 | 300-399                                                                                                    | KU6DSECMT306  | VI   |                                                                                     | 4  | 16/17(f)        | Elective |  |  |  |  |
| 26 |                                                                                                            | KU6INTCMT301  | VI   | Internship/Apprenticeship/Field Trip                                                | 2  | 18              |          |  |  |  |  |
|    | Courses For <u>BSc</u> Computational Mathematics Honours/Honours with Research<br>(VII and VIII Semesters) |               |      |                                                                                     |    |                 |          |  |  |  |  |
| 27 | 400-499                                                                                                    | KU7DSCCMT401  | VII  |                                                                                     | 4  | 19              |          |  |  |  |  |
| 28 | 400-499                                                                                                    | KU7DSCCMT402  | VII  |                                                                                     | 4  | 20              |          |  |  |  |  |
| 29 | 400-499                                                                                                    | KU7DSCCMT403  | VII  |                                                                                     | 4  | 21              |          |  |  |  |  |
| 30 | 400-499                                                                                                    | KU7DSCCMT404  | VII  |                                                                                     | 4  | 22              |          |  |  |  |  |
| 31 | 400-499                                                                                                    | KU7DSCCMT405  | VII  |                                                                                     | 4  | 23              |          |  |  |  |  |
| 32 | 400-499                                                                                                    | KU8DSCCMT401  | VIII |                                                                                     | 4  | 24              |          |  |  |  |  |
| 33 | 400-499                                                                                                    | KU8DSCCMT402  | VIII |                                                                                     | 4  | 25              |          |  |  |  |  |
| 34 | 400-499                                                                                                    | KU8DSCCMT403  | VIII |                                                                                     | 4  | 26              |          |  |  |  |  |
| 35 | 400-499                                                                                                    | KU8DSECMT401  | VIII | Research Methodology                                                                | 4  | 27/28/29<br>(a) | Elective |  |  |  |  |
| 36 | 400-499                                                                                                    | KU8DSECMT402  | VIII |                                                                                     | 4  | 27/28/29<br>(b) | Elective |  |  |  |  |
| 37 | 400-499                                                                                                    | KU8DSECMT403  | VIII |                                                                                     | 4  | 27/28/29<br>(c) | Elective |  |  |  |  |
| 38 | 400-499                                                                                                    | KU8DSECMT404  | VIII | MOOC/Online Course I                                                                | 4  | 27/28/29<br>(d) | Elective |  |  |  |  |
| 39 | 400-499                                                                                                    | KU8DSEMAT405  | VIII | MOOC/Online Course II                                                               | 4  | 27/28/29<br>(e) | Elective |  |  |  |  |
| 40 | 400-499                                                                                                    | KU8DSEMAT406  | VIII | MOOC/Online Course III                                                              | 4  | 27/28/29<br>(f) | Elective |  |  |  |  |
| 41 | 400-499                                                                                                    | KU8CIPCMT 400 | VIII | Capstone Internship Project in<br>Honours Programme in<br>Computational Mathematics | 8  | 30(a)           |          |  |  |  |  |
| 42 | 400-499                                                                                                    | KU8PHRCMT400  | VIII | Project in Honours with Research<br>Programme in Computational<br>Mathematics       | 12 | 30(b)           |          |  |  |  |  |

# SEMESTERWISE DISTRIBUTION OF COURSES FOR

# FOUR YEAR UGPROGRAMME IN COMPUTATIONAL MATHEMATICS

# (2024 ADMISSION ONWARDS)

### **SEMESTER 1**

| No | Title                       | Hours/ week | Credit | CE | ESE | Total marks |
|----|-----------------------------|-------------|--------|----|-----|-------------|
| 1  | AEC 1 (English)             | 3           | 3      | 25 | 50  | 75          |
| 2  | AEC 2 (Additional Language) | 3           | 3      | 25 | 50  | 75          |
| 3  | MDC 1                       | 3           | 3      | 25 | 50  | 75          |
| 4  | DSC (Major)                 | 4           | 4      | 30 | 70  | 100         |
| 5  | DSC (Minor 1)               | 4           | 4      | 30 | 70  | 100         |
| 6  | DSC (Minor 2)               | 4           | 4      | 30 | 70  | 100         |
|    | Total credits               |             | 21     |    |     |             |

# SEMESTER II

| No | Title                       | Hours/week | Credit | CE | ESE | Total marks |
|----|-----------------------------|------------|--------|----|-----|-------------|
| 1  | AEC 3 (English)             | 3          | 3      | 25 | 50  | 75          |
| 2  | AEC 4 (Additional Language) | 3          | 3      | 25 | 50  | 75          |
| 3  | MDC 2                       | 3          | 3      | 25 | 50  | 75          |
| 4  | DSC (Major)                 | 4          | 4      | 30 | 70  | 100         |
| 5  | DSC (Minor 1)               | 4          | 4      | 30 | 70  | 100         |
| 6  | DSC (Minor 2)               | 4          | 4      | 30 | 70  | 100         |
|    | Total credits               |            | 21     |    |     |             |

#### SEMESTER III

| No | Title         | Hours/w eek | Credit | CE | ESE | Total<br>marks |
|----|---------------|-------------|--------|----|-----|----------------|
| 1  | MDC 3         | 3           | 3      | 25 | 50  | 75             |
| 2  | VAC 1         | 3           | 3      | 25 | 50  | 75             |
| 3  | DSC (Major)   | 4           | 4      | 30 | 70  | 100            |
| 4  | DSC (Major)   | 4           | 4      | 30 | 70  | 100            |
| 5  | DSC (Minor 1) | 4           | 4      | 30 | 70  | 100            |
| 6  | DSC (Minor 2) | 4           | 4      | 30 | 70  | 100            |
|    | Total credits |             | 22     |    |     |                |

### **SEMESTER IV**

| No | Title         | Hours/week | Credit | CE | ESE | Total<br>marks |
|----|---------------|------------|--------|----|-----|----------------|
| 1  | SEC 1         | 3          | 3      | 25 | 50  | 75             |
| 2  | VAC 2         | 3          | 3      | 25 | 50  | 75             |
| 3  | VAC 3         | 3          | 3      | 25 | 50  | 75             |
| 4  | DSC (Major)   | 4          | 4      | 30 | 70  | 100            |
| 5  | DSC (Major)   | 4          | 4      | 30 | 70  | 100            |
| 6  | DSC (Major)   | 4          | 4      | 30 | 70  | 100            |
|    | Total credits |            | 21     |    |     |                |

# **SEMESTER V**

| No | Title                | Hours/<br>week | Credit | CE | ESE | Total marks |
|----|----------------------|----------------|--------|----|-----|-------------|
| 1  | SEC 2                | 3              | 3      | 25 | 50  | 75          |
| 2  | DSC (Major)          | 4              | 4      | 30 | 70  | 100         |
| 3  | DSC (Major)          | 4              | 4      | 30 | 70  | 100         |
| 4  | DSC (Major)          | 4              | 4      | 30 | 70  | 100         |
| 5  | DSE (Major Elective) | 4              | 4      | 30 | 70  | 100         |
| 6  | DSE (Major Elective) | 4              | 4      | 30 | 70  | 100         |
|    | Total credits        |                | 23     |    |     |             |

#### **SEMESTER VI**

| No | Title                | Hours/<br>week | Credit | CE | ESE | Total<br>mark<br>s |
|----|----------------------|----------------|--------|----|-----|--------------------|
| 1  | SEC 3                | 3              | 3      | 25 | 50  | 75                 |
| 2  | DSC (Major)          | 4              | 4      | 30 | 70  | 100                |
| 3  | DSC (Major)          | 4              | 4      | 30 | 70  | 100                |
| 4  | DSC (Major)          | 4              | 4      | 30 | 70  | 100                |
| 5  | DSE (Major Elective) | 4              | 4      | 30 | 70  | 100                |
| 6  | DSE (Major Elective) | 4              | 4      | 30 | 70  | 100                |
| 7  | Internship           | 2              | 2      |    |     |                    |
|    | Total credits        |                | 25     |    |     |                    |

# EXIT WITH UG DEGREE/PROCEED TO FOURTH YEAR WITH 133 CREDITS

| Total                                      | : 133 credits        |
|--------------------------------------------|----------------------|
| 1 Internship                               | :2 x1 = 2 credits    |
| 13 foundation courses (AEC, SEC, VAC, MDC) | :13 x 3 = 39 credits |
| 6 minor course                             | :6 x 4 = 24 credits  |
| 17 Major course                            | :17 x 4 = 68 credits |

### **SEMESTER VII**

| No | Title         | Hours/<br>week | Credit | CE | ESE | Total marks |
|----|---------------|----------------|--------|----|-----|-------------|
| 1  | DSC (Major)   | 4              | 4      | 30 | 70  | 100         |
| 2  | DSC (Major)   | 4              | 4      | 30 | 70  | 100         |
| 3  | DSC (Major)   | 4              | 4      | 30 | 70  | 100         |
| 4  | DSC (Major)   | 4              | 4      | 30 | 70  | 100         |
| 5  | DSC (Major)   | 4              | 4      | 30 | 70  | 100         |
|    | Total credits |                | 20     |    |     |             |

## **SEMESTER VIII**

|                                                    | Toatal<br>Credit | Total<br>marks<br>for CE | Total<br>marks for<br>ESE | Total marks |
|----------------------------------------------------|------------------|--------------------------|---------------------------|-------------|
| Project and Courses as per<br>the FYUGP Regulation | 24               | 180                      | 420                       | 600         |

# **DISCIPLINE SPECIFIC COURSES**

Kannur University: FYUP in Computational Mathematics 2024 11

# KU1DSCCMT101 COMPUTATIONAL DIFFERENTIAL CALCULUS

| Semester | Course Type | Course Level | Course Code  | Credits | Total Hours |
|----------|-------------|--------------|--------------|---------|-------------|
| Ι        | DSC         | 100-199      | KU1DSCCMT101 | 4       | 60          |

| Learning | Approach (Hou            | rs/ Week) | Marks Distribution |     |       | Duration of |  |
|----------|--------------------------|-----------|--------------------|-----|-------|-------------|--|
| Lecture  | Practical/<br>Internship | Tutorial  | CE                 | ESE | Total | ESE (Hours) |  |
| 4        |                          | 1         | 30                 | 70  | 100   | 2           |  |

# **Course Description**

This course is to introduce the notion of limits, continuity, derivatives, optimization problem, antiderivatives and to discuss applications of differentiation.

#### **Course Prerequisite**

Functions

## **Course Outcomes**

| CO No. | Expected Outcome                                                                                   | Learning<br>Domains |
|--------|----------------------------------------------------------------------------------------------------|---------------------|
| 1      | Comprehend exponential functions, inverse functions, logarithmic function and hyperbolic functions | Understand          |
| 2      | Understand the notion of limit and limit laws                                                      | Understand          |
| 3      | Understand continuity of a function                                                                | Understand          |
| 4      | Comprehend the notion of derivative of a function and differentiation rules                        | Understand          |
| 5      | Understand indeterminate forms                                                                     | Understand          |
| 6      | Understand the effect of derivative on the shape of graph of a function                            | Understand          |
| 7      | Comprehend antiderivatives                                                                         | Understand          |

# Mapping of Course Outcomes to PSOs

|      | PSO 1 | PSO 2 | PSO 3    | PSO 4 | PSO 5 | PSO 6 | PSO 7 |
|------|-------|-------|----------|-------|-------|-------|-------|
| CO 1 |       | 1     | 1        |       |       |       |       |
| CO 2 |       |       | 1        |       | 1     |       |       |
| CO 3 | 1     |       |          |       |       |       | 1     |
| CO 4 | 1     |       | 1        |       |       |       |       |
| CO 5 | 1     |       | 1        |       |       |       |       |
| CO 6 |       |       |          |       | 1     |       |       |
| CO 7 |       |       | <b>\</b> |       |       | 1     |       |

### **COURSE CONTENTS**

### **Contents for Classroom Transaction**

| M<br>O<br>D<br>L<br>E | U<br>N<br>I<br>T                                              | DESCRIPTION                           | HOURS |  |  |  |
|-----------------------|---------------------------------------------------------------|---------------------------------------|-------|--|--|--|
|                       | Fund                                                          | tions and Limits                      |       |  |  |  |
|                       | 1                                                             | Functions                             |       |  |  |  |
|                       |                                                               | a) Exponential functions              |       |  |  |  |
|                       |                                                               | b) Inverse functions                  |       |  |  |  |
| I                     |                                                               | c) logarithmic functions              | - 12  |  |  |  |
|                       | 2                                                             | Limits                                |       |  |  |  |
|                       |                                                               | a) Limit of a function and limit laws |       |  |  |  |
|                       |                                                               | b) continuity                         |       |  |  |  |
|                       |                                                               | c) Horizontal Asymptotes              |       |  |  |  |
| =                     | Differentiation of functions and Extreme values of a function |                                       |       |  |  |  |
| ••                    | 1                                                             | Derivatives and rate of change        | 12    |  |  |  |

|    | 2                                                                                                                                       | Hyperbolic functions                                   |    |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----|--|--|--|
|    | 3                                                                                                                                       | Extreme values of a function                           |    |  |  |  |
|    |                                                                                                                                         | a) Maximum values                                      |    |  |  |  |
|    | b) Minimum values                                                                                                                       |                                                        |    |  |  |  |
|    |                                                                                                                                         | c) The mean value Theorem                              |    |  |  |  |
|    | Арр                                                                                                                                     | lication of derivatives                                |    |  |  |  |
|    | 1                                                                                                                                       | Shape of graph of a function                           | 12 |  |  |  |
|    | 2                                                                                                                                       | Indeterminate forms                                    | 12 |  |  |  |
|    |                                                                                                                                         | a) L 'Hospital rule                                    |    |  |  |  |
|    | Opt                                                                                                                                     | imization problem and antiderivatives                  |    |  |  |  |
| IV | 1                                                                                                                                       | Optimization problem                                   | 12 |  |  |  |
|    | 2                                                                                                                                       | Antiderivatives                                        |    |  |  |  |
|    | Теа                                                                                                                                     | cher Specific Module                                   | 12 |  |  |  |
|    | Dire                                                                                                                                    | ctions                                                 |    |  |  |  |
| v  |                                                                                                                                         | Summary of curve sketching, graphing with calculus and |    |  |  |  |
|    | calculator(Sections4.5 to 4.6), Illustration of the topic in module I to module IV using softwares like GeoGebra, Demos Calculator etc. |                                                        |    |  |  |  |
|    | Any                                                                                                                                     | other topic related to modules I, II, III & IV         |    |  |  |  |

# **Essential Readings**

 James Stewart, Calculus; Early Transcendentals, 9<sup>th</sup> Edition, Cengage Learning 2021.

# **Reference Distribution**

| Module | Unit | Reference<br>No. | Sections                  | Remarks |
|--------|------|------------------|---------------------------|---------|
| 1      | 1    | 1                | Sections 1.4, 1.5         |         |
|        | 2    | 1                | Section 2.2 ,2.3, 2.5,2.6 |         |
| II     | 1    | 1                | Section 2.7,3.11          |         |

|    | 2 | 1 | Sections 4.1,4.2  |  |
|----|---|---|-------------------|--|
|    | 1 | 1 | Section 4.3       |  |
|    | 2 | 1 | Sections 4.4      |  |
| IV | 1 | 1 | Sections 4 .7,4.9 |  |

# Suggested Readings

- 1. B.S. Grewal, Higher Engineering Mathematics (43<sup>rd</sup> edition), Khanna Publishers
- 2. G.B. Thomas Jr., M.D. Weir and J.R. Hass, Thomas' Calculus: Early Transcendentals (12<sup>th</sup> edition), Pearson Education.
- 3. H. Anton, I. Bivens and S. Davis, Calculus (10<sup>th</sup> edition), Willey
- 4. S. Narayan and P.K. Mittal, Integral Calculus, Revised Edition, S. Chand & Company Ltd.
- 5. S. Narayan and P.K. Mittal, Differential Calculus, Revised Edition, S. Chand & Company Ltd.

# **Assessment Rubrics**

| E        | valuation Type     | Marks |
|----------|--------------------|-------|
| End Sem  | nester Evaluation  | 70    |
| Continuo | ous Evaluation     | 30    |
| a)       | Test Paper *       | 12    |
| b)       | Assignment         | 6     |
| c)       | Seminar, Viva-Voce | 12    |
|          | Total              | 100   |

\* A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

\*\*Use of Scientific Calculators below 100 functions (that is, upto *fx 99*) shall be permitted.

# **KU2DSCCMT101: COMPUTATIONAL INTEGRAL CALCULUS**

| Semester | Course Type Course Level |         | Course Code  | Credits | Total Hours |
|----------|--------------------------|---------|--------------|---------|-------------|
| II       | DSC                      | 100-199 | KU2DSCCMT101 | 4       | 60          |

| Learnir | ng Approach (Ho          | urs/ Week) | Mark | Duration of |       |                            |  |
|---------|--------------------------|------------|------|-------------|-------|----------------------------|--|
| Lecture | Practical/<br>Internship | Tutorial   | CE   | ESE         | Total | Duration of<br>ESE (Hours) |  |
| 4       |                          | 1          | 30   | 70          | 100   | 2                          |  |

## **Course Description**

In this course the student will learn the definite integral of a function, techniques to evaluate trigonometric integrals, and applications of integration. Also to approximate the value of a definite integral using the different methods of numerical integration.

# **Course Prerequisite**

Integrals of basic functions and rules of integration

## **Course Outcomes**

| CO<br>No. | Expected Outcome                                                                                                                                       | Learning<br>Domains |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 1         | Understand the fundamental theorem of calculus and apply it to find the derivatives and integrals of certain functions.                                | Understand          |
| 2         | Apply the notion of definite integrals to find area between<br>curves, volumes using cross-sections, arc length and areas of<br>surfaces of revolution | Apply               |
| 3         | Understand integration by successive reduction and apply reduction formulas to evaluate trigonometric integrals                                        | Understand          |
| 4         | Understand the concept of polar coordinates and apply it to find areas under the curves and length of curves                                           | Apply               |
| 5         | Understand numerical integration and apply the different<br>numerical integration methods to approximate the value of a<br>definite integral.          | Apply               |

# Mapping of Course Outcomes to PSOs

|      | PSO 1 | PSO 2 | PSO 3 | PSO 4 | PSO 5 | PSO 6 | PSO 7 |
|------|-------|-------|-------|-------|-------|-------|-------|
| CO 1 | 1     | 1     |       |       |       |       | 1     |
| CO 2 |       |       |       |       |       | 1     |       |
| CO 3 | 1     |       |       |       |       |       |       |
| CO 4 | 1     | 1     |       |       |       |       |       |
| CO 5 |       |       |       |       | 1     |       |       |
| CO 6 | 1     |       |       |       |       |       |       |
| CO 7 | 1     |       |       |       |       |       |       |

### **COURSE CONTENTS**

## **Contents for Classroom Transaction**

| M<br>O<br>D<br>U<br>LE | U<br>N<br>I<br>T                                                              | DESCRIPTION                                        |  |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------|----------------------------------------------------|--|--|--|--|--|
|                        | Int                                                                           | Integrals and it's applications                    |  |  |  |  |  |
|                        | 1                                                                             | a)The Definite integral,                           |  |  |  |  |  |
|                        |                                                                               | b) The Fundamental theorem of Calculus,            |  |  |  |  |  |
|                        |                                                                               | c) Indefinite integrals and the Net change theorem |  |  |  |  |  |
|                        | 2                                                                             | Application of Integration                         |  |  |  |  |  |
|                        |                                                                               | a) Area between curves                             |  |  |  |  |  |
|                        | Application of Integration ,Reduction formulas and trigonometric<br>Integrals |                                                    |  |  |  |  |  |
|                        | 1                                                                             | Applications of Integration                        |  |  |  |  |  |
|                        |                                                                               | a) Volumes,                                        |  |  |  |  |  |
| 11                     |                                                                               | b) Volumes by cylindrical shells                   |  |  |  |  |  |
|                        |                                                                               | c) Work                                            |  |  |  |  |  |
|                        |                                                                               | d) Average value of a function                     |  |  |  |  |  |
|                        | 2                                                                             | Reduction formulas and trigonometric Integrals     |  |  |  |  |  |

|    |                                                                                                                             | a) Reduction formulas and corresponding problems (From the exercise only) |    |  |  |  |
|----|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----|--|--|--|
|    | b) Trigonometric integrals                                                                                                  |                                                                           |    |  |  |  |
|    | Further applications of integration, Polar Co-ordinates                                                                     |                                                                           |    |  |  |  |
|    | 1                                                                                                                           | 1 Applications of integration                                             |    |  |  |  |
|    |                                                                                                                             | a) Arc length                                                             |    |  |  |  |
| ш  |                                                                                                                             | b) Area of a surface of revolution                                        | 12 |  |  |  |
|    | 2                                                                                                                           | 2 Polar Coordinates                                                       |    |  |  |  |
|    |                                                                                                                             | a) Polar Coordinates                                                      |    |  |  |  |
|    |                                                                                                                             | b) Areas and Lengths in Polar Coordinates                                 |    |  |  |  |
|    | Numerical Integrations.                                                                                                     |                                                                           |    |  |  |  |
|    | 1                                                                                                                           | a) Numerical Integration,                                                 |    |  |  |  |
| ıv |                                                                                                                             | b) Left End Points, Right End Points and Midpoint Sums                    |    |  |  |  |
|    | c) Trapezoidal Sums                                                                                                         |                                                                           |    |  |  |  |
|    |                                                                                                                             | d) Simpson's Rule                                                         |    |  |  |  |
|    |                                                                                                                             | e) Gaussian Quadrature                                                    |    |  |  |  |
|    | Additional Topic offered by teacher                                                                                         |                                                                           |    |  |  |  |
|    | Directions                                                                                                                  |                                                                           |    |  |  |  |
| v  | Discuss the geometry of problems solved in Unit I to Unit III using various softwares like Geogebra, Desmos Calculator etc. |                                                                           |    |  |  |  |
|    | Relevant Problems in Unit IV from the reference books                                                                       |                                                                           |    |  |  |  |
|    | Any other topic related to modules I, II, III & IV                                                                          |                                                                           |    |  |  |  |

# **Essential Readings**

- Calculus Early Transcedentals, Metric version, James Stewart, Daniel Clegg, Saleem Watson 9<sup>th</sup> Edition, Cengage Learning, 2021.
- 2. Introduction to computational Mathematics, William C. Bauldry, First edition, CRC Press.

# **Reference Distribution**

| Module | Unit | Reference<br>No. | Sections               | Remarks |
|--------|------|------------------|------------------------|---------|
| I      | 1    | 1                | Sections 5.2, 5.3, 5.4 |         |
|        | 2    | 1                | Section 6.1            |         |

|    | 1 | 1 | Section 6.2, 6.3, 6.4, 6.5               |                                                                  |
|----|---|---|------------------------------------------|------------------------------------------------------------------|
| 11 | 2 | 1 | Sections 7.1, 7.2                        | Only reduction formulas<br>from section 7.1 and its<br>exercises |
|    | 1 | 1 | Sections 8.1, 8.2                        |                                                                  |
|    | 2 | 1 | Sections 10.3, 10.4                      |                                                                  |
| IV | 1 | 2 | Sections 1, 2, 3, 4, 5 from<br>Chapter V |                                                                  |

### **Suggested Readings**

- 1. H. Anton, I. Bivens and S. Davis, Calculus, 10<sup>th</sup> edition, Willey
- 2. G.B Thomas Jr., M.D Weir and Joel R.Hass, Thomas' Calculus(12<sup>th</sup> edition), Pearson, 2009
- 3. S.K Stein, Calculus and Analytic Geometry, McGraw Hill, 1992.
- 4. G.F Simmons, Calculus with analytic Geometry(second edition)McGraw Hill,1995.
- 5. S.S Sastry, Introductory methods of numerical analysis, Fifth edition, PHI
- 6. M.K Jain, S.R.K. Iyengar, R.K. Jain, Numerical Methods For Scientific And Engineering Computation (4th Edition) New Age International Publications.

#### **Assessment Rubrics**

|        | Evaluation Type    | Marks |
|--------|--------------------|-------|
| End S  | emester Evaluation | 70    |
| Contir | nuous Evaluation   | 30    |
| a)     | Test Paper *       | 12    |
| b)     | Assignment         | 6     |
| c)     | Seminar, Viva-Voce | 12    |
|        | Total              | 100   |

\* A student has to appear for at least two written tests. Average mark of best two tests is to be considered for internal mark.

\*\*Use of Scientific Calculators below 100 functions (that is, upto *fx 99*) shall be permitted.